2022 USAMO Problems/Problem 5

Problem

A function $f: \mathbb{R}\to \mathbb{R}$ is $\textit{essentially increasing}$ if $f(s)\leq f(t)$ holds whenever $s\leq t$ are real numbers such that $f(s)\neq 0$ and $f(t)\neq 0$.

Find the smallest integer $k$ such that for any 2022 real numbers $x_1,x_2,\ldots , x_{2022},$ there exist $k$ essentially increasing functions $f_1,\ldots, f_k$ such that\[f_1(n) + f_2(n) + \cdots + f_k(n) = x_n\qquad \text{for every } n= 1,2,\ldots 2022.\]

Solution

Coming soon.

See also

2022 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png