G285 2021 Summer Problem Set Problem 2

Problem

Let \[f(x,y) = \begin{cases}x^y & \text{ if } x^2>y \text{ and } |x|<y\\f(f(\sqrt{|x|},y),y) & \text{ otherwise} \end{cases}\] If $y$ is a positive integer, find the sum of all values of $x$ such that $f(x,y) \neq k$ for some constant $k$.

$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ -\frac{1}{2} \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ \frac{3}{8} \qquad\textbf{(E)}\ 1$

Solution

Note for $x \in \{ -1,1 \}$, our function approaches an infinite recursion. Now, for $-1<x<1$, we have the function approaches $-1$, or $1$, which also is an infinite recursion. The answer is $\boxed{\textbf{(C)}\ 0}$