Logic

Logic is the systematic use of symbolic and mathematical techniques to determine the forms of valid deductive or inductive argument.

Statements

A statement is either true or false, but it will never be both or neither. An example of statement can be "A duck is a bird." which is true. Another example is "A pencil does not exist" which is false.

Logical Notations

Main article: Logical notation

A Logical notation is a special syntax that is shorthand for logical statements.

Negations

The negation of $p$, denoted by $\neg p$, is the statement that is true when $p$ is false and is false when $p$ is true. This means simply "it is not the case that $p$."

Conjunction

The conjunction of two statements basically means "$p$ and $q$" and is denoted by $p \land q$.

Disjunction

The disjunction of two statements basically means "$p$ or $q$" and is denoted by $p \vee q$.

Implication

This operation is given by the statement "If $p$, then $q$". It is denoted by $p\implies q$. An example is "if $x+3=5$, then $x=2$.

Converse

The converse of the statement $p \implies q$ is $q \implies p$.

Contrapositive

The contrapositive of the statement $p \implies q$ is $\neg q \implies \neg p$. These statements are logically equivalent.

Truth Tables

A truth tale is the list of all possible values of a compound statement.

Quantifiers

There are two types of quantifiers: A universal Quantifier: "for all" and an existential Quantifier: "there exists". A universal quantifier is denoted by $\forall$ and an existential quantifier is denoted by $\exists$.

See Also

Invalid username
Login to AoPS