Magma

A magma (or a groupoid) is a set $S$, together with a function $\bot : S \times S \mapsto S$, i.e., a set with a binary operation $\bot$. A set $S$ with an operation $\bot$ that maps some proper subset of $S \times S$ into $S$ may be described as a magma with an operation not everywhere defined on $S$.

Magmas so general that usually one studies special cases of magmas. For example, monoids are associative magmas with an identity.

Resources


This article is a stub. Help us out by expanding it.