Search results

  • ...] of length <math>c</math> we have the relationship <math>{a}^{2}+{b}^{2}={c}^{2}</math>. This theorem has been know since antiquity and is a classic t ...math>H </math> be the perpendicular to side <math>AB </math> from <math>{} C </math>.
    5 KB (885 words) - 22:03, 5 October 2024
  • In rectangle <math>ADEH</math>, points <math>B</math> and <math>C</math> trisect <math>\overline{AD}</math>, and points <math>G</math> and <m pair A,B,C,D,E,F,G,H,W,X,Y,Z;
    6 KB (1,106 words) - 09:20, 4 November 2024
  • <center><math>\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline n & 0 & 1 & 2 & 3 & \dots & 13 & 14 & 15 \\ :(c) those who caught <math>12</math> or fewer fish averaged <math>5</math> fis
    8 KB (1,275 words) - 05:55, 2 September 2021
  • ...\,</math> be the points where the circles inscribed in the triangles <math>ACH\,</math> and <math>BCH^{}_{}</math> are tangent to <math>\overline{CH}</mat pair A,B,C,H;
    3 KB (449 words) - 20:39, 21 September 2023
  • [[File:Bisector C.png|400px|right]] Denote <cmath>B' = BD \cap AC, C' = CD \cap AB,</cmath>
    54 KB (9,416 words) - 07:40, 18 April 2024
  • \text{(C) }72^\circ ...\angle ACH = 2+\sqrt{3}</math> upon calculation, we know that <math>\angle ACH</math> can be simplified. Indeed, if you know that <math>\tan(75)=2+\sqrt{3
    8 KB (1,322 words) - 19:17, 12 December 2024
  • ...angle A = 100^\circ</math>, <math>\angle B = 50^\circ</math>, <math>\angle C = 30^\circ</math>, <math>\overline{AH}</math> is an altitude, and <math>\ov label("C", (16,0), E);
    2 KB (221 words) - 17:04, 21 October 2018
  • ...th> are equally spaced on a minor arc of a second circle with center <math>C</math> as shown in the figure below. The angle <math>\angle ABD</math> exce pair A,B,C,D,E,F,G,H,I,O;
    5 KB (782 words) - 15:04, 21 July 2023
  • label("$C$", (4.579603216894479,7.895848109917452), NE * labelscalefactor); \textbf{(C)}\ \frac{4}{5}\sqrt{2} \qquad
    7 KB (893 words) - 00:26, 10 November 2024
  • ...<math>a</math> and <math>b</math> are the legs of the triangle, and <math>c</math> is the hypotenuse. ...math>H </math> be the perpendicular to side <math>AB </math> from <math>{} C </math>.
    6 KB (890 words) - 10:12, 23 June 2019
  • ...<math>a</math> and <math>b</math> are the legs of the triangle, and <math>c</math> is the hypotenuse. ...math>H </math> be the perpendicular to side <math>AB </math> from <math>{} C </math>.
    15 KB (2,425 words) - 08:25, 13 February 2020