Search results

  • For <math>n \in \mathbb{Z}^*</math> to be '''squarefree''' means that there is no integer <math>k>1</math> with <math>k^2|n</math>. ...on''': <math>\mu(n): = \begin{cases} 0 & \textrm{ if } n\; \textrm{ is not squarefree} \ (-1)^s & \textrm{ where } s \;\textrm{ is the number of prime factors o
    8 KB (1,401 words) - 12:11, 17 June 2008
  • ...the length of this path is <math>m\sqrt{n},</math> where <math>n</math> is squarefree, find <math>m+n.</math>
    1 KB (231 words) - 17:10, 10 July 2014
  • ...>\displaystyle a\pi+b\sqrt{c}</math> where <math>\displaystyle c</math> is squarefree, find <math>\displaystyle a+b+c</math>.
    7 KB (1,110 words) - 04:15, 31 December 2006
  • ...p(f(a_k))</math>. Also, since <math>f(k)</math> and <math>f(a_k)</math> is squarefree, <math>v_p(k), v_p(a_k) \leq 1</math>. Thus, <math>v_p(k \cdot a_k) = 1</ma
    12 KB (2,336 words) - 14:28, 28 October 2024
  • ...rm <math>a\sqrt{b}+c\sqrt{d}+e</math> where <math>b, d</math> are distinct squarefree integers. Find <math>a+b+c+d+e</math>.
    7 KB (1,309 words) - 10:13, 8 April 2012
  • ...rm <math>a\sqrt{b}+c\sqrt{d}+e</math> where <math>b, d</math> are distinct squarefree integers. Find <math>a+b+c+d+e</math>.
    2 KB (380 words) - 16:38, 7 April 2012
  • ...some fixed, [[squarefree]] <math>n</math> (if <math>n=x^2y</math> is not [[squarefree]], the case is equivalent to <math>n=y</math>). More specifically, the ques
    10 KB (1,646 words) - 14:04, 28 May 2020
  • ...can be expressed in the form <math>a+b\sqrt{c}</math>, for <math>b</math> squarefree. Compute <math>a+b+c</math>.
    7 KB (1,159 words) - 08:15, 30 July 2024
  • ...of <math>\triangle DEF</math> can be written as <math>a\sqrt{b}</math> for squarefree <math>b</math>. What is <math>a+b</math>?
    4 KB (651 words) - 19:18, 6 March 2021
  • ...th>m\sqrt{n}+o\sqrt{p}</math>, where <math>n</math> and <math>p</math> are squarefree,. Find <math>m+n+o+p</math>
    9 KB (1,577 words) - 22:28, 28 June 2021
  • ...math>c</math> are relatively prime positive integers and <math>b</math> is squarefree, find <math>a+b+c.</math>
    5 KB (830 words) - 12:04, 14 December 2023
  • ...> can be expressed as <math>\frac{\sqrt{m}}{n},</math> with <math>m</math> squarefree. Find <math>m+n</math>. ...ath> can be expressed as <math>m\sqrt{n}</math>, where <math>n</math> is a squarefree positive integer. Find <math>m+n</math>.
    9 KB (1,537 words) - 10:13, 25 December 2023
  • ...uch that <math>a</math> and <math>d</math> are positive, <math>c</math> is squarefree, and <math>\gcd{(a, b, d)}=1</math>, find the value of <math>a+b+c+d.</math
    2 KB (291 words) - 20:56, 31 May 2023
  • ...math>c</math> are relatively prime positive integers and <math>b</math> is squarefree, find <math>a+b+c.</math>
    501 bytes (89 words) - 12:02, 14 December 2023
  • ...> can be expressed as <math>\frac{\sqrt{m}}{n},</math> with <math>m</math> squarefree. Find <math>m+n</math>.
    373 bytes (66 words) - 12:06, 14 December 2023
  • ...ath> can be expressed as <math>m\sqrt{n}</math>, where <math>n</math> is a squarefree positive integer. Find <math>m+n</math>.
    743 bytes (124 words) - 12:07, 14 December 2023
  • ...uch that <math>a</math> and <math>d</math> are positive, <math>c</math> is squarefree, and <math>\gcd{(a, b, d)}=1</math>, find the value of <math>a+b+c+d.</math
    648 bytes (125 words) - 12:10, 14 December 2023
  • ...of the diagonals of <math>ABCD</math> is <math>a\sqrt{b},</math> for some squarefree <math>b,</math> find <math>a+b.</math>
    6 KB (891 words) - 02:41, 23 December 2023
  • ...th> where <math>a, b, c</math> are integers and <math>\gcd(b, c)</math> is squarefree. Find <math>a + b + c.</math> (For convenience, note that <math>\cos(36^\ci
    8 KB (1,238 words) - 01:14, 3 January 2024
  • is <math>b+c\sqrt{a},</math> for squarefree <math>a,</math> find <math>|a+b+c|.</math>
    3 KB (562 words) - 20:35, 15 December 2023

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)