Search results

  • (''Zuming Feng, Zhonghao Ye'') Let <math>ABCD</math> be a quadrilateral, and let <math>E</math> and <ma ...</math> because <math>FTY</math> tends both arcs <math>YF</math> and <math>YE</math>.
    5 KB (986 words) - 21:46, 18 May 2015
  • ...ngle A, \frac {AE}{GE} = \frac {IE}{IG'} = 3 \implies GY||AO', \frac {O'E}{YE} = 3, \frac {GG'}{G'Y} = \frac {AI}{IO'}.</math>
    59 KB (10,203 words) - 03:47, 30 August 2023
  • ...and <math>BD=BX</math>. Let <math>E</math> be on <math>YC</math> and <math>YE=YB</math>, then <cmath>AD=AB+BD=AB+BX=AY+YB=AE</cmath>
    4 KB (692 words) - 14:01, 15 May 2024
  • ...le ABX</math> is congruent to <math>\triangle YEZ</math>. We now get <math>YE=AB=40</math>.
    9 KB (1,451 words) - 09:01, 27 December 2022
  • Let <math>a=xe^{iA}</math>, <math>b=ye^{iB}</math>, <math>c=ze^{iC}</math> be numbers in the complex plane.
    2 KB (347 words) - 10:20, 6 May 2017
  • <cmath> (YE) \cdot (ME) = TTT</cmath>
    18 KB (2,788 words) - 18:25, 22 August 2024
  • <math>\because</math> <math>YE \parallel AD</math>, <math>\quad \therefore</math> <math>\triangle EYX \si
    8 KB (1,322 words) - 02:24, 7 October 2023
  • <cmath> (YE) \cdot (ME) = TTT</cmath>
    870 bytes (137 words) - 13:04, 20 February 2020
  • ...ngle A, \frac {AE}{GE} = \frac {IE}{IG'} = 3 \implies GY||AO', \frac {O'E}{YE} = 3, \frac {GG'}{G'Y} = \frac {AI}{IO'}.</math>
    3 KB (576 words) - 15:41, 23 November 2022
  • <cmath>YL\cdot YD=YF\cdot YE.</cmath> <cmath>YC\cdot YA=YF\cdot YE.</cmath>
    4 KB (705 words) - 12:41, 2 June 2024
  • ...e <math>HWM</math> is equivalent to angle <math> MWE</math> and <math>HM * YE = HY * ME</math>. Find the angle <math>MWY</math>.
    25 KB (3,738 words) - 09:53, 23 April 2024