User:Evin/Draft:Ordinal

Ordinals are an extension of the natural numbers. Ordinals can be used to describe the order type of a set. The order type of the natural numbers is the first infinite ordinal, $\omega$. Ordinals can be added and multiplied. The sum of two ordinals $a$ and $b$ is the ordinal that describes the order type of a set with order type a concatenated with one of order type b. Warning! Ordinal addition is not commutative. For example $1+\omega=\omega$, while $\omega+1>\omega$.

Every ordinal characterizes the order type of the ordered ordinals less than it. For example, $0,1,2,\dotsb,\omega$ has order type $\omega+1$.

The smallest ordinal that can't be constructed from $\omega$ by addition, multiplication, and exponentiation is $\varepsilon_0$, the first fixed point of the map $\alpha\mapsto\omega^\alpha$.