2022 AMC 12B Problems/Problem 24

Revision as of 16:14, 2 November 2024 by Scinderella220 (talk | contribs) (Solution 1 (Complex Numbers))

Problem

The figure below depicts a regular $7$-gon inscribed in a unit circle. [asy]         import geometry; unitsize(3cm); draw(circle((0,0),1),linewidth(1.5)); for (int i = 0; i < 7; ++i) {   for (int j = 0; j < i; ++j) {     draw(dir(i * 360/7) -- dir(j * 360/7),linewidth(1.5));   } } for(int i = 0; i < 7; ++i) {    dot(dir(i * 360/7),5+black); } [/asy] What is the sum of the $4$th powers of the lengths of all $21$ of its edges and diagonals?

$\textbf{(A) }49 \qquad \textbf{(B) }98 \qquad \textbf{(C) }147 \qquad \textbf{(D) }168 \qquad \textbf{(E) }196$

Solution 1 (Complex Numbers)

There are $7$ segments whose lengths are $2 \sin \frac{\pi}{7}$, $7$ segments whose lengths are $2 \sin \frac{2 \pi}{7}$, $7$ segments whose lengths are $2 \sin \frac{3\pi}{7}$.

Therefore, the sum of the $4$th powers of these lengths is \begin{align*} 7 \cdot 2^4 \sin^4 \frac{\pi}{7} + 7 \cdot 2^4 \sin^4 \frac{2 \pi}{7} + 7 \cdot 2^4 \sin^4 \frac{3 \pi}{7} & = \frac{7 \cdot 2^4}{(2i)^4} \left( e^{i \frac{\pi}{7}} - e^{i \frac{-\pi}{7}} \right)^4 + \frac{7 \cdot 2^4}{(2i)^4} \left( e^{i \frac{2 \pi}{7}} - e^{i \frac{-2 \pi}{7}} \right)^4 + \frac{7 \cdot 2^4}{(2i)^4} \left( e^{i \frac{3 \pi}{7}} - e^{i \frac{-3 \pi}{7}} \right)^4 \\ & = 7 \left( e^{i \frac{4 \pi}{7}} - 4 e^{i \frac{2 \pi}{7}} + 6 - 4 e^{- i \frac{2 \pi}{7}} + e^{- i \frac{4 \pi}{7}} \right) \\ & \quad + 7 \left( e^{i \frac{8 \pi}{7}} - 4 e^{i \frac{4 \pi}{7}} + 6 - 4 e^{- i \frac{4 \pi}{7}} + e^{- i \frac{8 \pi}{7}} \right) \\ & \quad + 7 \left( e^{i \frac{12 \pi}{7}} - 4 e^{i \frac{6 \pi}{7}} + 6 - 4 e^{- i \frac{6 \pi}{7}} + e^{- i \frac{12 \pi}{7}} \right) \\ & = 7 \left( e^{i \frac{4 \pi}{7}} + e^{i \frac{8 \pi}{7}} + e^{i \frac{12 \pi}{7}} + e^{-i \frac{4 \pi}{7}} + e^{-i \frac{8 \pi}{7}} + e^{-i \frac{12 \pi}{7}} \right) \\ & \quad - 7 \cdot 4 \left( e^{i \frac{2 \pi}{7}} + e^{i \frac{4 \pi}{7}} + e^{i \frac{6 \pi}{7}} + e^{-i \frac{2 \pi}{7}} + e^{-i \frac{4 \pi}{7}} + e^{-i \frac{6 \pi}{7}} \right) \\ & \quad + 7 \cdot 6 \cdot 3 \\ & = 7 \left( e^{i \frac{4 \pi}{7}} + e^{-i \frac{6 \pi}{7}} + e^{-i \frac{2 \pi}{7}} + e^{-i \frac{4 \pi}{7}} + e^{i \frac{6 \pi}{7}} + e^{i \frac{2 \pi}{7}} \right) \\ & \quad - 7 \cdot 4 \left( e^{i \frac{2 \pi}{7}} + e^{i \frac{4 \pi}{7}} + e^{i \frac{6 \pi}{7}} + e^{-i \frac{2 \pi}{7}} + e^{-i \frac{4 \pi}{7}} + e^{-i \frac{6 \pi}{7}} \right) \\ & \quad + 7 \cdot 6 \cdot 3 \\ & = -7 + 7 \cdot 4 + 7 \cdot 6 \cdot 3 \\ & = \boxed{\textbf{(C) }147}, \end{align*} where the fourth from the last equality follows from the property that \begin{align*} e^{i \frac{2 \pi}{7}} + e^{i \frac{4 \pi}{7}} + e^{i \frac{6 \pi}{7}} + e^{-i \frac{2 \pi}{7}} + e^{-i \frac{4 \pi}{7}} + e^{-i \frac{6 \pi}{7}} & = e^{-i \frac{6 \pi}{7}} \sum_{j=0}^6 e^{i \frac{2 \pi j}{7}} - 1  \\ & = 0 - 1 \\ & = -1 . \end{align*} ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) ~edited by scinderella220

Solution 2 (Trigonometry)

There are $7$ segments whose lengths are $2 \sin \frac{\pi}{7}$, $7$ segments whose lengths are $2 \sin \frac{2 \pi}{7}$, $7$ segments whose lengths are $2 \sin \frac{3\pi}{7}$.

Therefore, the sum of the $4$th powers of these lengths is \begin{align*} & 7 \cdot 2^4 \sin^4 \frac{\pi}{7} + 7 \cdot 2^4 \sin^4 \frac{2 \pi}{7} + 7 \cdot 2^4 \sin^4 \frac{3 \pi}{7} \\ & = 7 \cdot 2^4 \left( \frac{1 - \cos \frac{2 \pi}{7}}{2} \right)^2 + 7 \cdot 2^4 \left( \frac{1 - \cos \frac{4 \pi}{7}}{2} \right)^2 + 7 \cdot 2^4 \left( \frac{1 - \cos \frac{6 \pi}{7}}{2} \right)^2 \\ & = 7 \cdot 2^2 \left( 1 - 2 \cos \frac{2 \pi}{7} + \cos^2 \frac{2 \pi}{7} \right) + 7 \cdot 2^2 \left( 1 - 2 \cos \frac{4 \pi}{7} + \cos^2 \frac{4 \pi}{7} \right) + 7 \cdot 2^2 \left( 1 - 2 \cos \frac{6 \pi}{7} + \cos^2 \frac{6 \pi}{7} \right) \\ & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) + 7 \cdot 2^2 \left( \cos^2 \frac{2 \pi}{7} + \cos^2 \frac{4 \pi}{7}  + \cos^2 \frac{6 \pi}{7} \right) \\ & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) + 7 \cdot 2^2 \left( \frac{1 + \cos \frac{4 \pi}{7} }{2} + \frac{1 + \cos \frac{8 \pi}{7} }{2} + \frac{1 + \cos \frac{12 \pi}{7} }{2} \right) \\ & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) + 7 \cdot 2 \cdot 3 + 7 \cdot 2 \left( \cos \frac{4 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{12 \pi}{7} \right) \\ & = 7 \cdot 2^2 \cdot 3 - 7 \cdot 2^3 \left( \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \right) + 7 \cdot 2 \cdot 3 + 7 \cdot 2 \left( \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{2 \pi}{7} \right) \\ & = 7 \cdot 2 \cdot 3 \left( 2 + 1 \right) - 7 \cdot 2 \left( 4 - 1 \right) \left( \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{2 \pi}{7} \right) \\ & = 7 \cdot 2 \cdot 3 \left( 2 + 1 \right) - 7 \cdot 2 \left( 4 - 1 \right) \cdot \left( - \frac{1}{2} \right) \\ & = \boxed{\textbf{(C) }147}, \end{align*} where the second from the last equality follows from the property that \[ \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{2 \pi}{7} = - \frac{1}{2} . \]

For explanation see supplement.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 3 (Complex Numbers and Trigonometry)

As explained in Solutions 1 and 2, what we are trying to find is $7 \cdot 2^4 \sin^4 \frac{\pi}{7} + 7 \cdot 2^4 \sin^4 \frac{2 \pi}{7} + 7 \cdot 2^4 \sin^4 \frac{3 \pi}{7}$. Using trig we get \begin{align*}  & \sin^4 \frac{\pi}{7} + \sin^4 \frac{2 \pi}{7} + \sin^4 \frac{3 \pi}{7} \\ = & \sin^2 \frac{\pi}{7} \left(1 - \cos^2 \frac{\pi}{7} \right) + \sin^2 \frac{2\pi}{7} \left(1 - \cos^2 \frac{2\pi}{7} \right) + \sin^2 \frac{3\pi}{7} \left(1 - \cos^2 \frac{3\pi}{7} \right) \\ = & \sin^2 \frac{\pi}{7} - \left(\frac{1}{2} \sin \frac{2\pi}{7}\right)^2 + \sin^2 \frac{2\pi}{7} - \left(\frac{1}{2} \sin \frac{4\pi}{7}\right)^2 + \sin^2 \frac{3\pi}{7} - \left(\frac{1}{2} \sin \frac{6\pi}{7}\right)^2\\ = & \sin^2 \frac{\pi}{7} - \frac{1}{4} \sin^2 \frac{2\pi}{7} + \sin^2 \frac{2\pi}{7} - \frac{1}{4} \sin^2 \frac{4\pi}{7} + \sin^2 \frac{3\pi}{7} - \frac{1}{4} \sin^2 \frac{6\pi}{7} \\ = & \frac{3}{4} \left(\sin^2 \frac{\pi}{7} + \sin^2 \frac{2\pi}{7} + \sin^2 \frac{3\pi}{7}\right) \\ = & \frac{3}{4} \cdot \frac{1}{2} \left(1 - \cos \frac{2\pi}{7} + 1 - \cos \frac{4\pi}{7} + 1 - \cos \frac{6\pi}{7} \right)\\ = & \frac{3}{4} \cdot \frac{1}{2} \left(3 - \left(-\frac{1}{2}\right)\right) \\ = & \frac{21}{16}. \end{align*} Like in the second solution, we also use the fact that $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$, which admittedly might need some explanation.

For explanation see supplement.

Notice that \begin{align*} \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} & = \frac{1}{2}\left(e^\frac{2i\pi}{7}+ e^{-\frac{2i\pi}{7}} \right) + \frac{1}{2}\left( e^\frac{4i\pi}{7}+ e^{-\frac{4i\pi}{7}} \right) + \frac{1}{2}\left( e^\frac{6i\pi}{7}+ e^{-\frac{6i\pi}{7}}\right) \\ & = \frac{1}{2}\left(e^\frac{2i\pi}{7}+ e^{-\frac{2i\pi}{7}}+ e^\frac{4i\pi}{7}+ e^{-\frac{4i\pi}{7}} +e^\frac{6i\pi}{7}+ e^{-\frac{6i\pi}{7}} + 1\right) - \frac{1}{2} \end{align*} In the brackets we have the sum of the roots of the polynomial $x^7 - 1 = 0$. These sum to $0$ by Vieta’s formulas, and the desired identity follows. See Roots of unity if you have not seen this technique.

Going back to the question: \[7 \cdot 2^4 \sin^4 \frac{\pi}{7} + 7 \cdot 2^4 \sin^4 \frac{2 \pi}{7} + 7 \cdot 2^4 \sin^4 \frac{3 \pi}{7} = 7 \cdot 2^4 \left(\sin^4 \frac{\pi}{7} + \sin^4 \frac{2 \pi}{7} + \sin^4 \frac{3 \pi}{7}\right) = 7 \cdot 2^4 \cdot \frac{21}{16} = \boxed{\textbf{(C) }147}.\] ~obscene_kangaroo

Solution 4 (Trigonometry)

This solution follows the same steps as the trigonometry solutions (Solutions 2 and 3), except it gives an alternate way to prove the statement below true without complex numbers:

\[\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}\]

\begin{align*} S &= \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}, \\ S^2 &= \cos^2 \frac{2\pi}{7} + \cos^2 \frac{4\pi}{7} + \cos^2 \frac{6\pi}{7} + 2\cos \frac{2\pi}{7}\cos \frac{4\pi}{7} + 2\cos \frac{2\pi}{7}\cos \frac{6\pi}{7} + 2\cos \frac{4\pi}{7}\cos \frac{6\pi}{7} \\ &= \left(\frac{1+ \cos \frac{4\pi}{7}}{2}\right) + \left(\frac{1+ \cos \frac{8\pi}{7}}{2}\right) + \left(\frac{1+ \cos \frac{12\pi}{7}}{2}\right) + 2\cos \frac{2\pi}{7}\cos \frac{4\pi}{7} + 2\cos \frac{2\pi}{7}\cos \frac{6\pi}{7} + 2\cos \frac{4\pi}{7}\cos \frac{6\pi}{7} \\ &= \frac{1}{2}(3 + S)  + \left(\cos \frac{6\pi}{7} + \cos \frac{2\pi}{7}\right) + \left(\cos \frac{8\pi}{7} + \cos \frac{4\pi}{7}\right) + \left(\cos \frac{10\pi}{7} + \cos \frac{2\pi}{7}\right) \\ &= \frac{1}{2}(3 + S) + 2\cos \frac{2\pi}{7} + 2\cos \frac{4\pi}{7} + 2\cos \frac{6\pi}{7}\\ &= \frac{1}{2}(3 + S) + 2S. \\ \end{align*} We end up with \[2S^2 - 5S - 3 = 0.\] Using the quadratic formula, we find the solutions for $S$ to be $-\frac{1}{2}$ and $3$. Because $3$ is impossible, $S = -\frac{1}{2}$. With this result, following similar to steps to Solutions 2 and 3 will get $\boxed{\textbf{(C) }147}$

~lordf

Solution 5 (Law of Cosines)

Let $x$, $y$, and $z$ be the lengths of the chords with arcs $\frac{2\pi}{7}$, $\frac{4\pi}{7}$ and $\frac{6\pi}{7}$ respectively.

Then by the law of cosines we get: \begin{align*} x^2 &= 2\left(1-\cos\frac{2\pi}{7}\right), \\ y^2 &= 2\left(1-\cos\frac{4\pi}{7}\right), \\ z^2 &= 2\left(1-\cos\frac{6\pi}{7}\right). \end{align*} The answer is then just $7(x^4+y^4+z^4)$ (since there's $7$ of each diagonal/side), obtained by summing the squares of the above equations and then multiplying by $7$. \begin{align*} & \quad7\cdot2^2\left( \left(1-\cos\frac{2\pi}{7}\right)^2 + \left(1-\cos\frac{4\pi}{7}\right)^2 + \left(1-\cos\frac{6\pi}{7}\right)^2 \right) \\ &= 7\cdot4\left( \left(1-2\cos\frac{2\pi}{7}+\cos^2\frac{2\pi}{7}\right) + \left(1-2\cos\frac{4\pi}{7}+\cos^2\frac{4\pi}{7}\right) + \left(1-2\cos\frac{6\pi}{7}+\cos^2\frac{6\pi}{7}\right) \right) \\ &= 7\cdot4\left(3-2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right) + \left(\cos^2\frac{2\pi}{7}+\cos^2\frac{4\pi}{7}+\cos^2\frac{6\pi}{7}\right) \right) \\ &= 7\cdot4\left(3-2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right) + \frac12 \left(1+\cos\frac{4\pi}{7}+1+\cos\frac{8\pi}{7}+1+\cos\frac{12\pi}{7}\right) \right) \\ &= 7\cdot4\left(\frac{9}{2}-2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right) + \frac12 \left(\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}+\cos\frac{2\pi}{7}\right) \right) \\ &= 7\cdot4\left(\frac{9}{2}-\frac{3}{2}\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right) \right) \\ &= 7\cdot4\left(\frac{9}{2}-\frac{3}{2}\left(-\frac{1}{2}\right)\right) \\ &= \boxed{\textbf{(C) }147}. \end{align*}

(Use the identity that $\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7} = -\frac{1}{2}$.)

For explanation of this identity see supplement.

- SAHANWIJETUNGA

Solution 6 (Ruler Measure)

Hope you had a ruler handy! This problem can be done with a ruler and basic estimation.

First, measuring the radius of the circle obtains $2.9$ cm (when done on the paper version). Thus, any other measurement we get for the sides/diagonals should be divided by $2.9$.

Measuring the sides of the circle gets $2.5$ cm. The shorter diagonals are $4.5$ cm, and the longest diagonals measure $5.6$ cm. Thus, we'd like to estimate \[7\left(\frac{2.5}{2.9}\right)^4 + 7\left(\frac{4.5}{2.9}\right)^4 + 7\left(\frac{5.6}{2.9}\right)^4.\]

We know $\left(\frac{2.5}{2.9}\right)^4$ is slightly less than $1.$ Let's approximate it as 1 for now. Thus, $7\left(\frac{2.5}{2.9}\right)^4 \approx 7.$

Next, $\left(\frac{4.5}{2.9}\right)^4$ is slightly more than $\left(\frac{4.5}{3}\right)^4.$ We know $\left(\frac{4.5}{3}\right)^4 = 1.5^4 = \frac{81}{16},$ slightly more than $5,$ so we can approximate $\left(\frac{4.5}{2.9}\right)^4$ as $5.5.$ Thus, $7\left(\frac{4.5}{2.9}\right)^4 \approx 38.5.$

Finally, $\left(\frac{5.6}{2.9}\right)^4$ is slightly less than $\left(\frac{5.6}{2.8}\right)^4 = 2^4 = 16.$ We say it's around $15,$ so then $7\left(\frac{5.6}{2.9}\right)^4 \approx 105.$

Adding what we have, we get $105 + 38.5 + 1 = 144.5$ as our estimate. We see $\boxed{\textbf{(C) }147}$ is very close to our estimate, so we have successfully finished the problem.

~sirswagger21

Solution 7 (Pythagorean Theorem and Trig)

First, we put the figure in the coordinate plane with the center of the circle at the origin and a vertex on the positive x-axis. Thus, the coordinates of the vertices will be the terminal points of integer multiples of the angle $\frac{2\pi}{7},$ which are \[\left(\cos\dfrac{2\pi n}{7}, \sin\dfrac{2\pi n}{7}\right)\] for integer $n.$ Then, we notice there are three types of diagonals: the ones with chords of arcs $\dfrac{2\pi}{7}, \dfrac{4\pi}{7},$ and $\dfrac{6\pi}{7}.$ We notive there are here are $7$ of each type of diagonal. Then, we use the pythagorean theorem to find the distance from $\left(\cos\frac{2\pi n}{7}, \sin\frac{2\pi n}{7}\right)$ to $(1, 0)$: \[\left(\sqrt{\left(\cos\frac{2\pi n}{7}-1\right)^2+\sin^2\frac{2\pi n}{7}}\right)^4=\left(\sqrt{\cos^2\frac{2\pi n}{7}+\sin^2\frac{2\pi n}{7}-2\cos\frac{2\pi n}{7}+1}\right)^4\] \[=\left(\sqrt{2-2\cos\frac{2\pi n}{7}}\right)^4\] \[=4\cos^2\frac{2\pi n}{7}-8\cos\frac{2\pi n}{7}+4.\] By the cosine double angle identity, $\cos{2\theta}=2\cos^2\theta-1.$ This means that $2\cos^2\theta=\cos{2\theta}+1.$ Substituting this in, \[4\cos^2\frac{2\pi n}{7}-8\cos\frac{2\pi n}{7}+4=2\left(\cos\frac{4\pi n}{7}+1\right)-8\cos\frac{2\pi n}{7}+4=2\cos\frac{4\pi n}{7}-8\cos\frac{2\pi n}{7}+6.\] Summing this up for $n=1,2,3,$ \[2\cos\frac{4\pi}{7}-8\cos\frac{2\pi}{7}+6+2\cos\frac{8\pi}{7}-8\cos\frac{4\pi}{7}+6+2\cos\frac{12\pi}{7}-8\cos\frac{6\pi}{7}+6\] \[=2\left(\cos\frac{4\pi}{7}+\cos\frac{8\pi}{7}+\cos\frac{12\pi}{7}\right)-8\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)+18\] \[=2\left(\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}+\cos\frac{2\pi}{7}\right)-8\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)+18\] \[=2(-0.5)-8(-0.5)+18=21.\] (These equalities are based on $\cos\theta=\cos(2\pi-\theta)$ and $\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}=-\frac{1}{2}.$) (For explanation of this see supplement.) Finally, because there are $7$ of each type of diagonal, the answer is $7\cdot 21=\boxed{147}.$

~BS2012

Solution 8 (Roots of Unity)

Place the figure on the complex plane and let $w = e^{\frac{2\pi}{7}}$ (a $7$th root of unity). The vertices of the $7$-gon are $w^0,w^1,w^2,\dots,w^6$. We wish to find \[\sum_{i=0}^5\sum_{j=i+1}^6\lvert w^i-w^j\rvert^4 = \frac{1}{2}\sum_{i=0}^6\sum_{j=0}^6\lvert w^i-w^j\rvert^4.\] The second expression is more convenient to work with. The factor of $\tfrac{1}{2}$ is because it double-counts each edge (and includes when $i=j$, but the length is $0$ so it doesn't matter).

Recall the identity $|z|^2 = z\overline{z}$. Since $|w| = 1$, $\overline{w} = w^{-1}$, and \begin{align*}     \lvert w^i-w^j\rvert^4 &= ((w^i-w^j)(w^{-i}-w^{-j}))^2 \\     &= (2-w^{i-j}-w^{j-i})^2 \\     &= 4+w^{2i-2j}+w^{2j-2i}+2(-2w^{i-j}-2w^{j-i}+1) \\     &= 6-4w^{i-j}-4w^{j-i}+w^{2i-2j}+w^{2j-2i}. \end{align*}

But notice that, for a fixed value of $i$, over all values of $j$ from $0$ to $6$, by properties of modular arithmetic with $w^7 = w^0$ (or expanding), each of the $w^\bullet$-terms takes on every value in $w^0,w^1,w^2,\dots,w^6$ exactly once. Since $\sum_{j=0}^6 w^j = 0$, \begin{align*}     \frac{1}{2}\sum_{i=0}^6\sum_{j=0}^6\lvert w^i-w^j\rvert^4 &= \frac{1}{2}\sum_{i=0}^6\sum_{j=0}^6(6-4w^{i-j}-4w^{j-i}+w^{2i-2j}+w^{2j-2i}) \\     &= \frac{1}{2}\sum_{i=0}^6\left(\sum_{j=0}^6 6-4\sum_{j=0}^6 w^{i-j}-4\sum_{j=0}^6 w^{j-i}+\sum_{j=0}^6 w^{2i-2j}+\sum_{j=0}^6 w^{2j-2i}\right) \\     &= \frac{1}{2}\sum_{i=0}^6\left(\sum_{j=0}^6 6-4\sum_{j=0}^6 w^j-4\sum_{j=0}^6 w^j+\sum_{j=0}^6 w^j+\sum_{j=0}^6 w^j\right) \\     &= \frac{1}{2}\sum_{i=0}^6\sum_{j=0}^6 6 \\     &= \frac{1}{2}\cdot7\cdot7\cdot6 \\     &= \boxed{\textbf{(C) }147}. \end{align*}

Fun fact: This generalizes to any regular $n$-gon with $n \ge 3$ to obtain \[\frac{1}{2}\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}6 = 3n^2,\] though for even $n$, $w^{2i-2j}$ and $w^{2j-2i}$ take on every value in $w^0,w^2,w^4,\dots,w^{n-2}$ exactly twice. These are the $\tfrac{n}{2}$th roots of unity, so they still sum to $0$.

This also explains why $n < 3$ doesn't follow the pattern. For $n = 2$ (one edge of length $2$), since $w^{2i-2j} = (w^2)^{i-j} = 1^{i-j} = 1$ and similarly for $w^{2j-2i}$, the constant term in the summation becomes $8$ instead of $6$. For $n = 1$ (no edges), the constant term becomes $0$.

-maxamc

~edited by emerald_block

Solution 9 (Inductive Reasoning)

This is how I solve this problem:

It's easy to solve for $3$-gon, $4$-gon, and $6$-gon inscribed in a unit circle. (Okay, it's just the weird names for triangle, square, and hexagon)

For $3$-gon, the sum is equal to $3$ times the $4$th power of an edge. Thus, \[S_3=3\,\cdot\,\left(\sqrt{3}\right)^4=27.\]

For $4$-gon, the sum is equal to $4$ times the $4$th power of an edge, and $2$ times the $4$th power of the diagonal. Thus, \[S_4=4\,\cdot\,\left(\sqrt{2}\right)^4+2\,\cdot\,\left(2\right)^4=48.\]

For $6$-gon, the sum is equal to $6$ times the $4$th power of an edge, $6$ times the $4$th power of the short diagonal, and $3$ times the $4$th power of the long diagonal. Thus, \[S_6=6\,\cdot\,\left(1\right)^4+6\,\cdot\,\left(\sqrt{3}\right)^4+3\,\cdot\,\left(2\right)^4=108.\]

Then, I quickly noticed that $27=3\,\cdot\,3^2$, $48=3\,\cdot\,4^2$, and $108=3\,\cdot\,6^2$. So reasonably, it will work out this formula, $S_n=3n^2$. (This step is purely out of guessing, maybe have a look at Solution 8 for more info...)

By inductive reasoning, we got $S_7=3\,\cdot\,7^2=\boxed{\textbf{(C) }147}$.

- Prof. Joker

Supplement (Explanation of why cos(2π/7) + cos(4π/7) + cos(6π/7) = -1/2)

The sum of all roots of unity is $0$, therefore, the sum of the real parts of the roots of unity is $0$.

Consider the roots of unity of $x^n-1=0$ where $n$ is odd on the unit circle, the cosine (real parts) of all the roots under the x-axis is the same as the cosine of all the roots above the x-axis because of symmetry. Hence, $2$ times the sum of the cosines of all the roots above the x-axis plus $1$ is $0$.

In the context of this problem, $2(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}) + 1 = 0$. Hence, $\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7} = -\frac{1}{2}$

~isabelchen

Video Solution

https://youtu.be/nO5p_xfXykI

~ ThePuzzlr

https://youtu.be/yRbweIYtLU8

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png