Difference between revisions of "2002 AMC 10P Problems/Problem 2"

(Solution 1)
m (Solution 2)
 
(4 intermediate revisions by one other user not shown)
Line 17: Line 17:
 
We can use the sum of an arithmetic series to solve this problem.
 
We can use the sum of an arithmetic series to solve this problem.
  
Let the first integer equal a. The last integer in this string will be <math>a+10.</math> Plugging in <math>n=11, a_1=a,</math> and <math>a_n=a+10</math> into <math>\frac{n(a_1 + a_n)}{2}=2002,</math> we get:
+
Let the first integer equal <math>a.</math> The last integer in this string will be <math>a+10.</math> Plugging in <math>n=11, a_1=a,</math> and <math>a_n=a+10</math> into <math>\frac{n(a_1 + a_n)}{2}=2002,</math> we get:
  
 
\begin{align*}
 
\begin{align*}
Line 25: Line 25:
 
2a&=354 \\
 
2a&=354 \\
 
a&=177\\
 
a&=177\\
 +
\end{align*}
 +
 +
Thus, our answer is <math>\boxed{\textbf{(B) }177}</math>
 +
 +
== Solution 2 ==
 +
We can directly add everything up since <math>1 + 2 + \; \dots \; + 10</math> is so little.
 +
 +
Similar to the first solution, let the first integer equal <math>a.</math> The last integer in this string will be <math>a+10.</math>
 +
 +
\begin{align*}
 +
a + (a + 1) + (a + 2) + \; \dots \; + (a + 10) &= 2002 \\
 +
11a + (1 + 2 + \; \dots \; + 10) &= 2002 \\
 +
11a + 55 &= 2002 \\
 +
11a &= 1947 \\
 +
a &= \frac{1947}{11} \\
 +
a &= 177 \\
 
\end{align*}
 
\end{align*}
  

Latest revision as of 19:59, 31 July 2024

Problem 2

The sum of eleven consecutive integers is $2002.$ What is the smallest of these integers?

$\text{(A) }175 \qquad \text{(B) }177 \qquad \text{(C) }179 \qquad \text{(D) }180 \qquad \text{(E) }181$

Solution 1

We can use the sum of an arithmetic series to solve this problem.

Let the first integer equal $a.$ The last integer in this string will be $a+10.$ Plugging in $n=11, a_1=a,$ and $a_n=a+10$ into $\frac{n(a_1 + a_n)}{2}=2002,$ we get:

\begin{align*} \frac{11(a + a+10)}{2}&=2002 \\ 11(2a+10)&=4004 \\ 2a+10&=364 \\ 2a&=354 \\ a&=177\\ \end{align*}

Thus, our answer is $\boxed{\textbf{(B) }177}$

Solution 2

We can directly add everything up since $1 + 2 + \; \dots \; + 10$ is so little.

Similar to the first solution, let the first integer equal $a.$ The last integer in this string will be $a+10.$

\begin{align*} a + (a + 1) + (a + 2) + \; \dots \; + (a + 10) &= 2002 \\ 11a + (1 + 2 + \; \dots \; + 10) &= 2002 \\ 11a + 55 &= 2002 \\ 11a &= 1947 \\ a &= \frac{1947}{11} \\ a &= 177 \\ \end{align*}

Thus, our answer is $\boxed{\textbf{(B) }177}$

See Also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png