2024 AMC 10B Problems/Problem 24

Revision as of 02:53, 14 November 2024 by Hyper196884diamond (talk | contribs) (Solution #1)
The following problem is from both the 2024 AMC 10B #24 and 2024 AMC 12B #18, so both problems redirect to this page.

Problem 18

The Fibonacci numbers are defined by $F_1=1,$ $F_2=1,$ and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 3.$ What is\[\dfrac{F_2}{F_1}+\dfrac{F_4}{F_2}+\dfrac{F_6}{F_3}+\cdots+\dfrac{F_{20}}{F_{10}}?\] $\textbf{(A) }318 \qquad\textbf{(B) }319\qquad\textbf{(C) }320\qquad\textbf{(D) }321\qquad\textbf{(E) }322$

Solution #1

The first 20 terms F_n = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765

so ans = 1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 = $\boxed{(B) 319}$.

~luckuso

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png