Difference between revisions of "2019 USAJMO Problems/Problem 4"
m (→Solution) |
(→See also) |
||
Line 25: | Line 25: | ||
==See also== | ==See also== | ||
+ | {{MAA Notice}} | ||
{{USAJMO newbox|year=2019|num-b=3|num-a=5}} | {{USAJMO newbox|year=2019|num-b=3|num-a=5}} |
Revision as of 13:46, 4 May 2019
Contents
[hide]Problem
Let
be a triangle with
obtuse. The
-excircle is a circle in the exterior of
that is tangent to side
of the triangle and tangent to the extensions of the other two sides. Let
,
be the feet of the altitudes from
and
to lines
and
, respectively. Can line
be tangent to the
-excircle?
Solution
Instead of trying to find a synthetic way to describe being tangent to the
-excircle (very hard), we instead consider the foot of the perpendicular from the
-excircle to
, hoping to force something via the length of the perpendicular. It would be nice if there were an easier way to describe
, something more closely related to the
-excircle; as we are considering perpendicularity, if we could generate a line parallel to
, that would be good.
So we recall that it is well known that triangle is similar to
. This motivates reflecting
over the angle bisector at
to obtain
, which is parallel to
for obvious reasons.
Furthermore, as reflection preserves intersection, is tangent to the reflection of the
-excircle over the
-angle bisector. But it is well-known that the
-excenter lies on the
-angle bisector, so the
-excircle must be preserved under reflection over the
-excircle. Thus
is tangent to the
-excircle.Yet for all lines parallel to
, there are only two lines tangent to the
-excircle, and only one possibility for
, so
.
Thus as is isoceles,
contradiction. -alifenix-
Solution 2
The answer is no.
Suppose otherwise. Consider the reflection over the bisector of . This swaps rays
and
; suppose
and
are sent to
and
. Note that the
-excircle is fixed, so line
must also be tangent to the
-excircle.
Since is cyclic, we obtain
, so
. However, as
is a chord in the circle with diameter
,
.
If then
too, so then
lies inside
and cannot be tangent to the excircle.
The remaining case is when . In this case,
is also a diameter, so
is a rectangle. In particular
. However, by the existence of the orthocenter, the lines
and
must intersect, contradiction.
See also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
2019 USAJMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |