Difference between revisions of "1988 AIME Problems/Problem 3"

(Solution 3)
(Solution 3)
Line 44: Line 44:
  
 
First we have
 
First we have
<math></math>log_2
+
<cmath>\begin{align*}
 +
\log_2(\log_8x)&=\log_8(\log_2x)\\
 +
\frac{\log_2(\log_8x)}{\log_8(\log_2x)}&=1
 +
\end{align*}</cmath>
 +
Changing the base in the numerator yields
 +
<cmath>\begin{align*}
 +
\frac{3\log_8(\log_8x)}{\log_8(\log_2x)}&=1\\
 +
\frac{\log_8(\log_8x)}{\log_8(\log_2x)}&=\frac{1}{3}\\
 +
\end{align*}</cmath>
 +
Using the property <math>\frac{\log_ab}{\log_ac}=\log_cb</math> yields
 +
<cmath>\log_{\log_2x}(log_8x)=1\3</cmath>
  
 
== See also ==
 
== See also ==

Revision as of 17:55, 26 August 2019

Problem

Find $(\log_2 x)^2$ if $\log_2 (\log_8 x) = \log_8 (\log_2 x)$.

Solution 1

Raise both as exponents with base 8:

\begin{align*} 8^{\log_2 (\log_8 x)} &= 8^{\log_8 (\log_2 x)}\\ 2^{3 \log_2(\log_8x)} &= \log_2x\\ (\log_8x)^3 &= \log_2x\\ \left(\frac{\log_2x}{\log_28}\right)^3 &= \log_2x\\ (\log_2x)^2 &= (\log_28)^3 = \boxed{27}\\ \end{align*}


A quick explanation of the steps: On the 1st step, we use the property of logarithms that $a^{\log_a x} = x$. On the 2nd step, we use the fact that $k \log_a x = \log_a x^k$. On the 3rd step, we use the change of base formula, which states $\log_a b = \frac{\log_k b}{\log_k a}$ for arbitrary $k$.

Solution 2: Substitution

We wish to convert this expression into one which has a uniform base. Let's scale down all the powers of 8 to 2.

\begin{align*} {\log_2 (\frac{1}{3}\log_2 x)} &= \frac{1}{3}{\log_2 (\log_2 x)}\\ {\log_2 x = y}\\ {\log_2 (\frac{1}{3}y)} &= \frac{1}{3}{\log_2 (y)}\\ {3\log_2 (\frac{1}{3}y)} &= {\log_2 (y)}\\  {\log_2 (\frac{1}{3}y)^3} &= {\log_2 (y)}\\  \end{align*} Solving, we get $y^2 = 27$, which is what we want. $\boxed{27}$



Just a quick note- In this solution, we used 2 important rules of logarithm: 1) $\log_a b^n=n\log_a b$. 2) $\log_{a^n} b=\frac{1}{n}\log_a b$.

Solution 3

First we have \begin{align*} \log_2(\log_8x)&=\log_8(\log_2x)\\ \frac{\log_2(\log_8x)}{\log_8(\log_2x)}&=1 \end{align*} Changing the base in the numerator yields \begin{align*} \frac{3\log_8(\log_8x)}{\log_8(\log_2x)}&=1\\ \frac{\log_8(\log_8x)}{\log_8(\log_2x)}&=\frac{1}{3}\\ \end{align*} Using the property $\frac{\log_ab}{\log_ac}=\log_cb$ yields

\[\log_{\log_2x}(log_8x)=1\3\] (Error compiling LaTeX. Unknown error_msg)

See also

1988 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png