Difference between revisions of "1998 AIME Problems/Problem 12"
(→Problem) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math>ABC</math> be [[equilateral triangle|equilateral]], and <math>D, E,</math> and <math>F</math> be the [[midpoint]]s of <math>\overline{ | + | Let <math>ABC</math> be [[equilateral triangle|equilateral]], and <math>D, E,</math> and <math>F</math> be the [[midpoint]]s of <math>\overline{AC}, \overline{AB},</math> and <math>\overline{BC},</math> respectively. There exist [[point]]s <math>P, Q,</math> and <math>R</math> on <math>\overline{DE}, \overline{EF},</math> and <math>\overline{FD},</math> respectively, with the property that <math>P</math> is on <math>\overline{CQ}, Q</math> is on <math>\overline{AR},</math> and <math>R</math> is on <math>\overline{BP}.</math> The [[ratio]] of the area of triangle <math>ABC</math> to the area of triangle <math>PQR</math> is <math>a + b\sqrt {c},</math> where <math>a, b</math> and <math>c</math> are integers, and <math>c</math> is not divisible by the square of any [[prime]]. What is <math>a^{2} + b^{2} + c^{2}</math>? |
== Solution == | == Solution == |
Revision as of 22:59, 31 October 2019
Problem
Let be equilateral, and and be the midpoints of and respectively. There exist points and on and respectively, with the property that is on is on and is on The ratio of the area of triangle to the area of triangle is where and are integers, and is not divisible by the square of any prime. What is ?
Solution
We let , , . Since and , and .
By alternate interior angles, we have and . By vertical angles, .
Thus , so .
Since is equilateral, . Solving for and using and gives and .
Using the Law of Cosines, we get
We want the ratio of the squares of the sides, so so .
See also
1998 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.