Difference between revisions of "1959 IMO Problems/Problem 2"

(Solution)
(Solution)
Line 13: Line 13:
 
Firstly, the square roots imply that a valid domain for x  is <math>x\ge \frac{1}{2}</math>.
 
Firstly, the square roots imply that a valid domain for x  is <math>x\ge \frac{1}{2}</math>.
  
Square both sides of the given equation: <cmath> \Big( x + \sqrt{2x - 1}\Big)  + 2 \sqrt{x + \sqrt{2x - 1}}  \sqrt{x - \sqrt{2x - 1}} +  \Big( x - \sqrt{2x - 1}\Big) = A^2</cmath>and simplify to obtain <cmath>A^2 = 2(x+|x-1|)</cmath>
+
Square both sides of the given equation: <cmath> \Big( x + \sqrt{2x - 1}\Big)  + 2 \sqrt{x + \sqrt{2x - 1}}  \sqrt{x - \sqrt{2x - 1}} +  \Big( x - \sqrt{2x - 1}\Big) = A^2</cmath>
  
 
Add the first and the last terms to get <cmath>2x + 2 \sqrt{x + \sqrt{2x - 1}}  \sqrt{x - \sqrt{2x - 1}} = A^2</cmath>
 
Add the first and the last terms to get <cmath>2x + 2 \sqrt{x + \sqrt{2x - 1}}  \sqrt{x - \sqrt{2x - 1}} = A^2</cmath>
  
Multiply the middle terms, and use <math>(a + b)(a - b) = a^2 - b^2</math> to get:<cmath>2x + 2 \sqrt{x^2 + 2x - 1} = A^2</cmath>  
+
Multiply the middle terms, and use <math>(a + b)(a - b) = a^2 - b^2</math> to get:<cmath>2x + 2 \sqrt{x^2 + 2x - 1} = A^2</cmath>
 +
 
 +
Simplify to obtain <cmath>A^2 = 2(x+|x-1|)</cmath>
  
 
If <math>x \le 1</math>, then we must clearly have <math>A^2 =2</math>.  Otherwise, we have
 
If <math>x \le 1</math>, then we must clearly have <math>A^2 =2</math>.  Otherwise, we have
Line 23: Line 25:
 
<cmath>x = \frac{A^2 + 2}{4} > 1,</cmath>
 
<cmath>x = \frac{A^2 + 2}{4} > 1,</cmath>
 
<cmath>A^2 > 2 </cmath>
 
<cmath>A^2 > 2 </cmath>
 
  
 
Hence for (a) the solution is <math> x \in \left[ \frac{1}{2}, 1 \right]</math>, for (b) there is no solution, since we must have <math>A^2 \ge 2</math>, and for (c), the only solution is <math> x=\frac{3}{2}</math>.  Q.E.D.
 
Hence for (a) the solution is <math> x \in \left[ \frac{1}{2}, 1 \right]</math>, for (b) there is no solution, since we must have <math>A^2 \ge 2</math>, and for (c), the only solution is <math> x=\frac{3}{2}</math>.  Q.E.D.

Revision as of 13:33, 15 December 2019

Problem

For what real values of $x$ is

$\sqrt{x+\sqrt{2x-1}} + \sqrt{x-\sqrt{2x-1}} = A,$

given (a) $A=\sqrt{2}$, (b) $A=1$, (c) $A=2$, where only non-negative real numbers are admitted for square roots?

Solution

Firstly, the square roots imply that a valid domain for x is $x\ge \frac{1}{2}$.

Square both sides of the given equation: \[\Big( x + \sqrt{2x - 1}\Big)   + 2 \sqrt{x + \sqrt{2x - 1}}  \sqrt{x - \sqrt{2x - 1}} +  \Big( x - \sqrt{2x - 1}\Big) = A^2\]

Add the first and the last terms to get \[2x + 2 \sqrt{x + \sqrt{2x - 1}}  \sqrt{x - \sqrt{2x - 1}} = A^2\]

Multiply the middle terms, and use $(a + b)(a - b) = a^2 - b^2$ to get:\[2x + 2 \sqrt{x^2 + 2x - 1} = A^2\]

Simplify to obtain \[A^2 = 2(x+|x-1|)\]

If $x \le 1$, then we must clearly have $A^2 =2$. Otherwise, we have

\[x = \frac{A^2 + 2}{4} > 1,\] \[A^2 > 2\]

Hence for (a) the solution is $x \in \left[ \frac{1}{2}, 1 \right]$, for (b) there is no solution, since we must have $A^2 \ge 2$, and for (c), the only solution is $x=\frac{3}{2}$. Q.E.D.

~flamewavelight (Expanded)

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

1959 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions