Difference between revisions of "1966 AHSME Problems/Problem 36"
(→Solution 2) |
(→Solution 2) |
||
Line 10: | Line 10: | ||
Let <math>f(x)=(1+x+x^2)^n</math> then we have | Let <math>f(x)=(1+x+x^2)^n</math> then we have | ||
− | <cmath>f(1)=a_0+a_1+a_2+...+ | + | <cmath>f(1)=a_0+a_1+a_2+...+a_{2n}=(1+1+1)^n=3^n</cmath> |
− | <cmath>f(-1)=a_0-a_1+a_2-...+ | + | <cmath>f(-1)=a_0-a_1+a_2-...+a_{2n}=(1-1+1)^n=1</cmath> |
Adding yields | Adding yields | ||
<cmath>f(1)+f(-1)=2(a_0+a_2+a_4+...+a_{2n})=3^n+1</cmath> | <cmath>f(1)+f(-1)=2(a_0+a_2+a_4+...+a_{2n})=3^n+1</cmath> |
Revision as of 21:08, 23 December 2019
Contents
[hide]Problem
Let be an identity in . If we let , then equals:
Solution
Solution 2
Let then we have Adding yields Thus , or .
~ Nafer
See also
1966 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 35 |
Followed by Problem 37 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.