Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 2"

m (let)
m (.)
 
Line 6: Line 6:
 
b) If <math>x_{1}</math> is the distance of <math>A</math> form <math>\Gamma\Delta</math> and <math>x_{2}</math> is the distance of <math>\Gamma</math> form <math>\Alpha\Gamma</math> prove that
 
b) If <math>x_{1}</math> is the distance of <math>A</math> form <math>\Gamma\Delta</math> and <math>x_{2}</math> is the distance of <math>\Gamma</math> form <math>\Alpha\Gamma</math> prove that
  
<math>\frac{x_{1}}{x_{2}} = \frac{Area(\Alpha\Gamma\Delta)}{Area(\Alpha\Gamma\Epsilon)} = \frac{\Alpha\Beta}{\Beta\Gamma}</math>
+
<math>\frac{x_{1}}{x_{2}} = \frac{Area(\Alpha\Gamma\Delta)}{Area(\Alpha\Gamma\Epsilon)} = \frac{\Alpha\Beta}{\Beta\Gamma}</math>.
  
  

Latest revision as of 09:54, 11 November 2006

Problem

Let $\Alpha, \Beta, \Gamma$ (Error compiling LaTeX. Unknown error_msg) be consecutive points on a straight line $(\epsilon)$. We construct equilateral triangles $\Alpha\Beta\Delta$ (Error compiling LaTeX. Unknown error_msg) and $\Beta\Gamma\Epsilon$ (Error compiling LaTeX. Unknown error_msg) to the same side of $(\epsilon)$.

a) Prove that $\angle\Alpha\Epsilon\Beta = \angle\Delta\Gamma\Beta$ (Error compiling LaTeX. Unknown error_msg)

b) If $x_{1}$ is the distance of $A$ form $\Gamma\Delta$ and $x_{2}$ is the distance of $\Gamma$ form $\Alpha\Gamma$ (Error compiling LaTeX. Unknown error_msg) prove that

$\frac{x_{1}}{x_{2}} = \frac{Area(\Alpha\Gamma\Delta)}{Area(\Alpha\Gamma\Epsilon)} = \frac{\Alpha\Beta}{\Beta\Gamma}$ (Error compiling LaTeX. Unknown error_msg).


Solution


See also