Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 1"

(Solution)
(Problem)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
If <math>\alpha, \beta, \gamma \in \Re- \{0\}</math> with <math>\alpha + \beta + \gamma = 0</math>, prove that
+
If <math>\alpha, \beta, \gamma \in \mathbb{R}- \{0\}</math> with <math>\alpha + \beta + \gamma = 0</math>, prove that
  
 
i) <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math>
 
i) <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math>
  
ii) <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math>
+
ii) <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math>.
  
 
== Solution ==
 
== Solution ==
Line 24: Line 24:
 
<math>\frac{1}{-2(\beta + \gamma)(\alpha + \gamma)} + \frac{1}{-2(\alpha + \beta)(\beta + \gamma)} + \frac{1}{-2(\alpha + \beta)(\alpha + \gamma)} = 0</math>
 
<math>\frac{1}{-2(\beta + \gamma)(\alpha + \gamma)} + \frac{1}{-2(\alpha + \beta)(\beta + \gamma)} + \frac{1}{-2(\alpha + \beta)(\alpha + \gamma)} = 0</math>
  
Form part i)
+
Form part i) it becomes
  
 
<math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math>
 
<math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math>

Latest revision as of 12:41, 24 November 2006