Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 1"
(→Solution) |
(→Problem) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | If <math>\alpha, \beta, \gamma \in \ | + | If <math>\alpha, \beta, \gamma \in \mathbb{R}- \{0\}</math> with <math>\alpha + \beta + \gamma = 0</math>, prove that |
i) <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math> | i) <math>\alpha^2 + \beta^2 - \gamma^2 = -2(\beta + \gamma)(\alpha + \gamma) </math> | ||
− | ii) <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math> | + | ii) <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math>. |
== Solution == | == Solution == | ||
Line 24: | Line 24: | ||
<math>\frac{1}{-2(\beta + \gamma)(\alpha + \gamma)} + \frac{1}{-2(\alpha + \beta)(\beta + \gamma)} + \frac{1}{-2(\alpha + \beta)(\alpha + \gamma)} = 0</math> | <math>\frac{1}{-2(\beta + \gamma)(\alpha + \gamma)} + \frac{1}{-2(\alpha + \beta)(\beta + \gamma)} + \frac{1}{-2(\alpha + \beta)(\alpha + \gamma)} = 0</math> | ||
− | Form part i) | + | Form part i) it becomes |
<math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math> | <math>\frac{1}{\beta^2 + \gamma^2 - \alpha^2} + \frac{1}{\gamma^2 + \alpha^2 - \beta^2} + \frac{1}{\alpha^2 + \beta^2 - \gamma^2} = 0</math> |
Latest revision as of 12:41, 24 November 2006
Problem
If with , prove that
i)
ii) .
Solution
i)
ii)
Form part i) it becomes