Difference between revisions of "2019 USAMO Problems/Problem 2"

(Solution)
(Solution)
Line 7: Line 7:
 
Note that only one point <math>P</math> satisfies the given angle condition. With this in mind, construct <math>P'</math> with the following properties:
 
Note that only one point <math>P</math> satisfies the given angle condition. With this in mind, construct <math>P'</math> with the following properties:
 
   
 
   
[*] <math>AP' \cdot AB = AD^2</math>
+
(1) <math>AP' \cdot AB = AD^2</math>
[*] <math>BP' \cdot AB = CD^2</math>
+
(2) <math>BP' \cdot AB = CD^2</math>
 
   
 
   
 
Claim: <math>P = P'</math>
 
Claim: <math>P = P'</math>
Line 19: Line 19:
  
 
We have  
 
We have  
 +
 
\begin{align*}  
 
\begin{align*}  
 
AP \cdot AB = AD^2 \iff AB^2 \cdot AP &= AD^2 \cdot AB \
 
AP \cdot AB = AD^2 \iff AB^2 \cdot AP &= AD^2 \cdot AB \
Line 27: Line 28:
 
\end{align*}
 
\end{align*}
 
as desired. <math>\square</math>
 
as desired. <math>\square</math>
 +
 
Since <math>P</math> is the isogonal conjugate of <math>N</math>, <math>\measuredangle PEA = \measuredangle MEC = \measuredangle BEN</math>. However <math>\measuredangle MEC = \measuredangle BEN</math> implies that <math>M</math> is the midpoint of <math>CD</math> from similar triangles, so we are done. <math>\square</math>
 
Since <math>P</math> is the isogonal conjugate of <math>N</math>, <math>\measuredangle PEA = \measuredangle MEC = \measuredangle BEN</math>. However <math>\measuredangle MEC = \measuredangle BEN</math> implies that <math>M</math> is the midpoint of <math>CD</math> from similar triangles, so we are done. <math>\square</math>
  

Revision as of 01:37, 2 March 2020

Problem

Let $ABCD$ be a cyclic quadrilateral satisfying $AD^2 + BC^2 = AB^2$. The diagonals of $ABCD$ intersect at $E$. Let $P$ be a point on side $\overline{AB}$ satisfying $\angle APD = \angle BPC$. Show that line $PE$ bisects $\overline{CD}$.

Solution

Let $PE \cap DC = M$. Also, let $N$ be the midpoint of $AB$. Note that only one point $P$ satisfies the given angle condition. With this in mind, construct $P'$ with the following properties:

(1) $AP' \cdot AB = AD^2$ (2) $BP' \cdot AB = CD^2$

Claim: $P = P'$ Proof: The conditions imply the similarities $ADP \sim ABD$ and $BCP \sim BAC$ whence $\measuredangle APD = \measuredangle BDA = \measuredangle BCA = \measuredangle CPB$ as desired. $\square$

Claim: $PE$ is a symmedian in $AEB$

Proof:

We have

APAB=AD2AB2AP=AD2AB(ABAD)2=ABAP(ABAD)21=ABAP1AB2AD2AD2=BPAP(BCAD)2=(BEAE)2=BPAP as desired. $\square$

Since $P$ is the isogonal conjugate of $N$, $\measuredangle PEA = \measuredangle MEC = \measuredangle BEN$. However $\measuredangle MEC = \measuredangle BEN$ implies that $M$ is the midpoint of $CD$ from similar triangles, so we are done. $\square$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2019 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions