Difference between revisions of "Binomial Theorem"
(Tag: Undo) |
|||
Line 35: | Line 35: | ||
==Usage== | ==Usage== | ||
Many [[factoring | factorizations]] involve complicated [[polynomial]]s with [[binomial coefficient]]s. For example, if a contest problem involved the polynomial <math>x^5+4x^4+6x^3+4x^2+x</math>, one could factor it as such: <math> x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}</math>. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients. | Many [[factoring | factorizations]] involve complicated [[polynomial]]s with [[binomial coefficient]]s. For example, if a contest problem involved the polynomial <math>x^5+4x^4+6x^3+4x^2+x</math>, one could factor it as such: <math> x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}</math>. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients. | ||
+ | |||
+ | ==See also== | ||
+ | *[[Combinatorics]] | ||
+ | *[[Multinomial Theorem]] | ||
+ | |||
+ | [[Category:Theorems]] | ||
+ | [[Category:Combinatorics]] | ||
+ | [[Category:Algebra]] |
Revision as of 19:30, 11 April 2020
The Binomial Theorem states that for real or complex , , and non-negative integer ,
where is a binomial coefficient. In other words, the coefficients when is expanded and like terms are collected are the same as the entries in the th row of Pascal's Triangle.
For example, , with coefficients , , , etc.
Proof
There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of mathematical induction. The Binomial Theorem also has a nice combinatorial proof:
We can write . Repeatedly using the distributive property, we see that for a term , we must choose of the terms to contribute an to the term, and then each of the other terms of the product must contribute a . Thus, the coefficient of is the number of ways to choose objects from a set of size , or . Extending this to all possible values of from to , we see that , as claimed.
Similarly, the coefficients of will be the entries of the row of Pascal's Triangle. This is explained further in the Counting and Probability textbook [AoPS].
Proof via Induction
Given the constants are all natural numbers, it's clear to see that . Assuming that , Therefore, if the theorem holds under , it must be valid. (Note that for )
Generalizations
The Binomial Theorem was generalized by Isaac Newton, who used an infinite series to allow for complex exponents: For any real or complex , , and ,
Proof
Consider the function for constants . It is easy to see that . Then, we have . So, the Taylor series for centered at is
Usage
Many factorizations involve complicated polynomials with binomial coefficients. For example, if a contest problem involved the polynomial , one could factor it as such: . It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.