Difference between revisions of "2015 USAJMO Problems/Problem 3"
Thingarfield (talk | contribs) (→Solution 1) |
(→Solution 2) |
||
Line 80: | Line 80: | ||
By <math>(3)</math>, <math>KM^2-KP^2=0</math>, so <math>KM^2=KP^2</math>, as desired. <math>QED</math> | By <math>(3)</math>, <math>KM^2-KP^2=0</math>, so <math>KM^2=KP^2</math>, as desired. <math>QED</math> | ||
+ | |||
+ | ==More Solutions== | ||
+ | https://artofproblemsolving.com/wiki/index.php/2015_USAMO_Problems/Problem_2 |
Latest revision as of 15:45, 29 April 2020
Contents
[hide]Problem
Quadrilateral is inscribed in circle with and . Let be a variable point on segment . Line meets again at (other than ). Point lies on arc of such that is perpendicular to . Let denote the midpoint of chord . As varies on segment , show that moves along a circle.
Solution 1
We will use coordinate geometry.
Without loss of generality, let the circle be the unit circle centered at the origin, , where .
Let angle , which is an acute angle, , then .
Angle , . Let , then .
The condition yields: (E1)
Use identities , , , we obtain . (E1')
The condition that is on the circle yields , namely . (E2)
is the mid-point on the hypotenuse of triangle , hence , yielding . (E3)
Expand (E3), using (E2) to replace with , and using (E1') to replace with , and we obtain , namely , which is a circle centered at with radius .
Solution 2
Let the midpoint of be . We claim that moves along a circle with radius .
We will show that , which implies that , and as is fixed, this implies the claim.
by the median formula on .
by the median formula on .
.
As , from right triangle .
By , .
Since is the circumcenter of , and is the circumradius, the expression is the power of point with respect to . However, as is also the power of point with respect to , this implies that .
By ,
Finally, by AA similarity ( and ), so .
By , , so , as desired.
More Solutions
https://artofproblemsolving.com/wiki/index.php/2015_USAMO_Problems/Problem_2