Difference between revisions of "2019 USAJMO Problems/Problem 4"
(→See also) |
(Added a new solution) |
||
Line 23: | Line 23: | ||
The remaining case is when <math>EF = BC</math>. In this case, <math>\overline{EF}</math> is also a diameter, so <math>BECF</math> is a rectangle. In particular <math>\overline{BE} \parallel \overline{CF}</math>. However, by the existence of the orthocenter, the lines <math>BE</math> and <math>CF</math> must intersect, contradiction. | The remaining case is when <math>EF = BC</math>. In this case, <math>\overline{EF}</math> is also a diameter, so <math>BECF</math> is a rectangle. In particular <math>\overline{BE} \parallel \overline{CF}</math>. However, by the existence of the orthocenter, the lines <math>BE</math> and <math>CF</math> must intersect, contradiction. | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | The answer is <math>\boxed{\text{no}}</math>. | ||
+ | |||
+ | Suppose for the sake of contradiction that it is possible for <math>EF</math> to be tangent to the <math>A</math>-excircle. Call the tangency point <math>T</math>, and let <math>S_1, S_2</math> denote the contact points of <math>AB, AC</math> with the <math>A</math>-excircle, respectively. Let <math>s</math> denote the semiperimeter of <math>ABC</math>. By equal tangents, we have <cmath>ET = ES_2, FT = FS_1 \implies EF = ES_2+FS_2</cmath>It is also well known that <math>AS_1 = AS_2 = \frac{s}{2}</math>, so <cmath>EF = ES_2+FS_2 = (AS_2-AE)+(AS_1-AF) = s-AE-AF \implies s=AE+AF+EF</cmath>It is well known (by an easy angle chase) that <math>\triangle AEF \sim \triangle ABC</math>, so we must have the ratio of similitude is <math>2</math>. In particular, <cmath>AB=2 \cdot AE, AC=2 \cdot AF</cmath>This results in <cmath>\angle ABE = 30^{\circ}, \angle CBF = 30^{\circ} \implies \angle EBC = 120^{\circ}</cmath>which is absurd since <math>\triangle BEC</math> is a right triangle. We reached a contradiction, so we are done. | ||
==See also== | ==See also== | ||
{{MAA Notice}} | {{MAA Notice}} | ||
{{USAJMO newbox|year=2019|num-b=3|num-a=5}} | {{USAJMO newbox|year=2019|num-b=3|num-a=5}} |
Revision as of 17:03, 24 May 2020
Contents
[hide]Problem
Let be a triangle with obtuse. The -excircle is a circle in the exterior of that is tangent to side of the triangle and tangent to the extensions of the other two sides. Let , be the feet of the altitudes from and to lines and , respectively. Can line be tangent to the -excircle?
Solution
Instead of trying to find a synthetic way to describe being tangent to the -excircle (very hard), we instead consider the foot of the perpendicular from the -excircle to , hoping to force something via the length of the perpendicular. It would be nice if there were an easier way to describe , something more closely related to the -excircle; as we are considering perpendicularity, if we could generate a line parallel to , that would be good.
So we recall that it is well known that triangle is similar to . This motivates reflecting over the angle bisector at to obtain , which is parallel to for obvious reasons.
Furthermore, as reflection preserves intersection, is tangent to the reflection of the -excircle over the -angle bisector. But it is well-known that the -excenter lies on the -angle bisector, so the -excircle must be preserved under reflection over the -excircle. Thus is tangent to the -excircle.Yet for all lines parallel to , there are only two lines tangent to the -excircle, and only one possibility for , so .
Thus as is isoceles, contradiction. -alifenix-
Solution 2
The answer is no.
Suppose otherwise. Consider the reflection over the bisector of . This swaps rays and ; suppose and are sent to and . Note that the -excircle is fixed, so line must also be tangent to the -excircle.
Since is cyclic, we obtain , so . However, as is a chord in the circle with diameter , .
If then too, so then lies inside and cannot be tangent to the excircle.
The remaining case is when . In this case, is also a diameter, so is a rectangle. In particular . However, by the existence of the orthocenter, the lines and must intersect, contradiction.
Solution 3
The answer is .
Suppose for the sake of contradiction that it is possible for to be tangent to the -excircle. Call the tangency point , and let denote the contact points of with the -excircle, respectively. Let denote the semiperimeter of . By equal tangents, we have It is also well known that , so It is well known (by an easy angle chase) that , so we must have the ratio of similitude is . In particular, This results in which is absurd since is a right triangle. We reached a contradiction, so we are done.
See also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
2019 USAJMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |