Difference between revisions of "1956 AHSME Problems/Problem 49"
m |
|||
Line 3: | Line 3: | ||
First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>. | First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>. | ||
− | Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, <math>\begin{align*} | + | Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, |
+ | <math>\begin{align*} | ||
\angle AOB &= 180^\circ - \angle BAO - \angle ABO \ | \angle AOB &= 180^\circ - \angle BAO - \angle ABO \ | ||
&= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \ | &= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \ |
Revision as of 11:36, 1 August 2020
Solution 1
First, from triangle , . Note that bisects (to see this, draw radii from to and creating two congruent right triangles), so . Similarly, .
Also, , and . Hence,
$
Finally, from triangle , , so