# 1956 AHSME Problems/Problem 49

## Problem

Triangle $PAB$ is formed by three tangents to circle $O$ and $\angle APB = 40^{\circ}$; then $\angle AOB$ equals: $\textbf{(A)}\ 45^{\circ}\qquad \textbf{(B)}\ 50^{\circ}\qquad \textbf{(C)}\ 55^{\circ}\qquad \textbf{(D)}\ 60^{\circ}\qquad \textbf{(E)}\ 70^{\circ}$

## Solution

First, from triangle $ABO$, $\angle AOB = 180^\circ - \angle BAO - \angle ABO$. Note that $AO$ bisects $\angle BAT$ (to see this, draw radii from $O$ to $AB$ and $AT,$ creating two congruent right triangles), so $\angle BAO = \angle BAT/2$. Similarly, $\angle ABO = \angle ABR/2$.

Also, $\angle BAT = 180^\circ - \angle BAP$, and $\angle ABR = 180^\circ - \angle ABP$. Hence, $\angle AOB 180^\circ - \angle BAO - \angle ABO = 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} = 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2}= \frac{\angle BAP + \angle ABP}{2}.$

Finally, from triangle $ABP$, $\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ$, so $$\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.$$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 