Difference between revisions of "2013 USAMO Problems/Problem 1"
(→Solution 4) |
(→Solution 4) |
||
Line 121: | Line 121: | ||
<asy> | <asy> | ||
import graph; size(12cm); | import graph; size(12cm); | ||
− | real labelscalefactor = | + | real labelscalefactor = 1.9; |
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); | ||
− | |||
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); | pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); | ||
Line 134: | Line 133: | ||
draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | ||
dot((-3.6988888888888977,6.426666666666669)); | dot((-3.6988888888888977,6.426666666666669)); | ||
− | label("$A$", (-3.65,6.49333333333334), N); | + | label("$A$", (-3.65,6.49333333333334), N * labelscalefactor); |
dot((-7.61,-5)); | dot((-7.61,-5)); | ||
− | label("$B$", (-7.556666666666688,-4.866666666666666), SW); | + | label("$B$", (-7.556666666666688,-4.866666666666666), SW * labelscalefactor); |
dot((7.09,-5)); | dot((7.09,-5)); | ||
label("$C$", (7.15,-4.866666666666666), SE * labelscalefactor); | label("$C$", (7.15,-4.866666666666666), SE * labelscalefactor); | ||
dot((-2.958888888888898,-5)); | dot((-2.958888888888898,-5)); | ||
− | label("$P$", (-2.9033333333333546,-4.866666666666666), S); | + | label("$P$", (-2.9033333333333546,-4.866666666666666), S * labelscalefactor); |
dot((0.5968131669050584,1.8770271258031248)); | dot((0.5968131669050584,1.8770271258031248)); | ||
− | label("$Q$", (0.6566666666666455,2.0133333333333376), NE); | + | label("$Q$", (0.6566666666666455,2.0133333333333376), NE * labelscalefactor); |
dot((-5.053354907372894,2.4694710603912564)); | dot((-5.053354907372894,2.4694710603912564)); | ||
− | label("$R$", (-4.996666666666688,2.6), | + | label("$R$", (-4.996666666666688,2.6), dir(165) * labelscalefactor); |
dot((-3.143912404905382,-2.142970212141873)); | dot((-3.143912404905382,-2.142970212141873)); | ||
− | label("$Z'$", (-3.09,-2.04), | + | label("$Z'$", (-3.09,-2.04), dir(170) * labelscalefactor); |
dot((-3.413789986031826,2.0243286531799747)); | dot((-3.413789986031826,2.0243286531799747)); | ||
− | label("$Y'$", (-3.3566666666666882,2.1333333333333377), NE); | + | label("$Y'$", (-3.3566666666666882,2.1333333333333377), NE * labelscalefactor); |
dot((-3.3284001481939356,0.7057864725120093)); | dot((-3.3284001481939356,0.7057864725120093)); | ||
− | label("$X'$", (-3.276666666666688,0.8133333333333368), | + | label("$X'$", (-3.276666666666688,0.8133333333333368), dir(20) * labelscalefactor); |
dot((1.7922953932137468,0.6108747864253139)); | dot((1.7922953932137468,0.6108747864253139)); | ||
− | label("$V$", (1.8433333333333121,0.72), NE); | + | label("$V$", (1.8433333333333121,0.72), NE * labelscalefactor); |
dot((-5.8024625203461,-5)); | dot((-5.8024625203461,-5)); | ||
− | label("$U$", (-5.7433333333333545,-4.8933333333333335), | + | label("$U$", (-5.7433333333333545,-4.8933333333333335), S * labelscalefactor); |
dot((-0.10264330299819162,1.125351256231488)); | dot((-0.10264330299819162,1.125351256231488)); | ||
− | label("$T$", (-0.05,1.2266666666666703), | + | label("$T$", (-0.05,1.2266666666666703), dir(105) * labelscalefactor); |
</asy> | </asy> | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:47, 5 August 2020
Contents
[hide]Problem
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that
Solution 1
In this solution, all lengths and angles are directed.
Firstly, it is easy to see by that concur at a point . Let meet again at and , respectively. Then by Power of a Point, we have Thusly But we claim that . Indeed, and Therefore, . Analogously we find that and we are done.
courtesy v_enhance
Solution 2
Diagram Refer to the Diagram link.
By Miquel's Theorem, there exists a point at which intersect. We denote this point by Now, we angle chase: In addition, we have Now, by the Ratio Lemma, we have (by the Law of Sines in ) (by the Law of Sines in ) by the Ratio Lemma. The proof is complete.
Solution 3
Use directed angles modulo .
Lemma.
Proof.
Now, it follows that (now not using directed angles) using the facts that and , and are similar triangles, and that equals twice the circumradius of the circumcircle of .
Solution 4
We can use some construction arguments to solve the problem.
Let and let We construct lines through the points and that intersect with at the points and respectively, and that intersect each other at We will construct these lines such that
Now we let the intersections of with and be and respectively. This construction is as follows.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.