Difference between revisions of "Lucas' Theorem"
I like pie (talk | contribs) m |
(→Proof) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 6: | Line 6: | ||
=== Proof === | === Proof === | ||
For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have | For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have | ||
− | < | + | <cmath>\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\ |
− | &\equiv& 1+x^p\pmod{p}\end{eqnarray*}</ | + | &\equiv& 1+x^p\pmod{p}\end{eqnarray*}</cmath> |
Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then | Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then | ||
− | < | + | <cmath>\begin{eqnarray*}(1+x)^{p^{k+1}} |
&\equiv&\left((1+x)^{p^k}\right)^p\ | &\equiv&\left((1+x)^{p^k}\right)^p\ | ||
&\equiv&\left(1+x^{p^k}\right)^p\ | &\equiv&\left(1+x^{p^k}\right)^p\ | ||
&\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\ | &\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\ | ||
− | &\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</ | + | &\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</cmath> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Latest revision as of 14:13, 11 August 2020
Lucas' Theorem states that for any prime and any positive integers , if is the representation of in base and is the representation of in base (possibly with some leading s) then .
Lemma
For prime and ,
Proof
For all , . Then we have Assume we have . Then