Difference between revisions of "2011 AMC 10A Problems/Problem 16"
Rahulverma (talk | contribs) m (→Solution 1) |
|||
Line 4: | Line 4: | ||
<math>\text{(A)}\,3\sqrt2 \qquad\text{(B)}\,2\sqrt6 \qquad\text{(C)}\,\frac{7\sqrt2}{2} \qquad\text{(D)}\,3\sqrt3 \qquad\text{(E)}\,6</math> | <math>\text{(A)}\,3\sqrt2 \qquad\text{(B)}\,2\sqrt6 \qquad\text{(C)}\,\frac{7\sqrt2}{2} \qquad\text{(D)}\,3\sqrt3 \qquad\text{(E)}\,6</math> | ||
− | == Solution 1 == | + | == Solution 1 (Bash)== |
We find the answer by squaring, then square rooting the expression. | We find the answer by squaring, then square rooting the expression. |
Revision as of 15:52, 20 August 2020
Problem 16
Which of the following is equal to ?
Solution 1 (Bash)
We find the answer by squaring, then square rooting the expression.
Solution 2 (FASTER!)
We can change the insides of the square root into a perfect square and then simplify.
See Also
2011 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.