Difference between revisions of "2006 AMC 10B Problems/Problem 21"
Line 24: | Line 24: | ||
<math> P = \frac{1}{21}\cdot\frac{6}{21}+\frac{2}{21}\cdot\frac{5}{21}+\frac{3}{21}\cdot\frac{4}{21}+\frac{4}{21}\cdot\frac{3}{21}+\frac{5}{21}\cdot\frac{2}{21}+\frac{6}{21}\cdot\frac{1}{21}=\frac{8}{63} \Rightarrow C </math> | <math> P = \frac{1}{21}\cdot\frac{6}{21}+\frac{2}{21}\cdot\frac{5}{21}+\frac{3}{21}\cdot\frac{4}{21}+\frac{4}{21}\cdot\frac{3}{21}+\frac{5}{21}\cdot\frac{2}{21}+\frac{6}{21}\cdot\frac{1}{21}=\frac{8}{63} \Rightarrow C </math> | ||
+ | |||
+ | == Solution 2 == | ||
+ | (Alcumus solution) | ||
+ | On each die the probability of rolling <math>k</math>, for <math>1\leq | ||
+ | k\leq 6</math>, is <math> | ||
+ | \frac{k}{1+2+3+4+5+6}=\frac{k}{21}. | ||
+ | </math>There are six ways of rolling a total of 7 on the two dice, represented by the ordered pairs <math>(1,6)</math>, <math>(2,5)</math>, <math>(3,4)</math>, <math>(4,3)</math>, <math>(5,2)</math>, and <math>(6,1)</math>. Thus the probability of rolling a total of 7 is <math> | ||
+ | \frac{1\cdot6+2\cdot5+3\cdot4+4\cdot3+5\cdot2+6\cdot1}{21^2}=\frac{56}{21^2}=\boxed{\frac{8}{63}}.</math> | ||
== See Also == | == See Also == |
Revision as of 11:08, 25 August 2020
Contents
[hide]Problem
For a particular peculiar pair of dice, the probabilities of rolling , , , , , and , on each die are in the ratio . What is the probability of rolling a total of on the two dice?
Solution
Let be the probability of rolling a . The probabilities of rolling a , , , , and are , , , , and , respectively.
The sum of the probabilities of rolling each number must equal 1, so
So the probabilities of rolling a , , , , , and are respectively , and .
The possible combinations of two rolls that total are:
The probability of rolling a total of on the two dice is equal to the sum of the probabilities of rolling each combination.
Solution 2
(Alcumus solution) On each die the probability of rolling , for , is There are six ways of rolling a total of 7 on the two dice, represented by the ordered pairs , , , , , and . Thus the probability of rolling a total of 7 is
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.