Difference between revisions of "2020 CIME I Problems/Problem 1"
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | Let <math>A</math> denote a move of <math>2</math> units north and <math>1</math> unit east, and let <math>B</math> denote a move of <math>1</math> unit north and <math>2</math> units east. To get to the point <math>(15,15)</math> using only these moves, say <math>a</math> moves in direction <math>A</math> and <math>b</math> moves in direction <math>B</math>, we must have <math>2a+1b=1a+2b=15</math> because both the <math>x</math> and <math>y</math>-coordinates have increased by <math>15</math> since the knight started. Solving this system of equations gives us <math>a=b=5</math>. This means we need the knight to make <math>10</math> moves, <math>5</math> of which are headed in direction <math>A</math>, and the remaining <math>5</math> are headed in direction <math>B</math>. Any combination of these moves work, so the answer is <math>\binom{10}{5}=\boxed{252}.</math> | + | Let <math>A</math> denote a move of <math>2</math> units north and <math>1</math> unit east, and let <math>B</math> denote a move of <math>1</math> unit north and <math>2</math> units east. To get to the point <math>(15,15)</math> using only these moves, say <math>a</math> moves in direction <math>A</math> and <math>b</math> moves in direction <math>B</math>, we must have <math>2a+1b=1a+2b=15</math> because both the <math>x</math>- and <math>y</math>-coordinates have increased by <math>15</math> since the knight started. Solving this system of equations gives us <math>a=b=5</math>. This means we need the knight to make <math>10</math> moves, <math>5</math> of which are headed in direction <math>A</math>, and the remaining <math>5</math> are headed in direction <math>B</math>. Any combination of these moves work, so the answer is <math>\binom{10}{5}=\boxed{252}.</math> |
==See also== | ==See also== |
Revision as of 10:37, 1 September 2020
Problem 1
A knight begins on the point in the coordinate plane. From any point
the knight moves to either
or
. Find the number of ways the knight can reach the point
.
Solution
Let denote a move of
units north and
unit east, and let
denote a move of
unit north and
units east. To get to the point
using only these moves, say
moves in direction
and
moves in direction
, we must have
because both the
- and
-coordinates have increased by
since the knight started. Solving this system of equations gives us
. This means we need the knight to make
moves,
of which are headed in direction
, and the remaining
are headed in direction
. Any combination of these moves work, so the answer is
See also
2020 CIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All CIME Problems and Solutions |
The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions.