Difference between revisions of "2008 AMC 12B Problems/Problem 23"
(→Alternative thinking) |
m (minor changes) |
||
Line 1: | Line 1: | ||
− | ==Problem 23== | + | == Problem 23 == |
The sum of the base-<math>10</math> logarithms of the divisors of <math>10^n</math> is <math>792</math>. What is <math>n</math>? | The sum of the base-<math>10</math> logarithms of the divisors of <math>10^n</math> is <math>792</math>. What is <math>n</math>? | ||
<math>\text{(A)}\ 11\qquad \text{(B)}\ 12\qquad \text{(C)}\ 13\qquad \text{(D)}\ 14\qquad \text{(E)}\ 15</math> | <math>\text{(A)}\ 11\qquad \text{(B)}\ 12\qquad \text{(C)}\ 13\qquad \text{(D)}\ 14\qquad \text{(E)}\ 15</math> | ||
− | + | == Solutions == | |
− | ==Solutions== | ||
=== Solution 1 === | === Solution 1 === | ||
Every factor of <math>10^n</math> will be of the form <math>2^a \times 5^b , a\leq n , b\leq n</math>. Using the logarithmic property <math>\log(a \times b) = \log(a)+\log(b)</math>, it suffices to count the total number of 2's and 5's running through all possible <math>(a,b)</math>. For every factor <math>2^a \times 5^b</math>, there will be another <math>2^b \times 5^a</math>, so it suffices to count the total number of 2's occurring in all factors (because of this symmetry, the number of 5's will be equal). And since <math>\log(2)+\log(5) = \log(10) = 1</math>, the final sum will be the total number of 2's occurring in all factors of <math>10^n</math>. | Every factor of <math>10^n</math> will be of the form <math>2^a \times 5^b , a\leq n , b\leq n</math>. Using the logarithmic property <math>\log(a \times b) = \log(a)+\log(b)</math>, it suffices to count the total number of 2's and 5's running through all possible <math>(a,b)</math>. For every factor <math>2^a \times 5^b</math>, there will be another <math>2^b \times 5^a</math>, so it suffices to count the total number of 2's occurring in all factors (because of this symmetry, the number of 5's will be equal). And since <math>\log(2)+\log(5) = \log(10) = 1</math>, the final sum will be the total number of 2's occurring in all factors of <math>10^n</math>. | ||
Line 11: | Line 10: | ||
There are <math>n+1</math> choices for the exponent of 5 in each factor, and for each of those choices, there are <math>n+1</math> factors (each corresponding to a different exponent of 2), yielding <math>0+1+2+3...+n = \frac{n(n+1)}{2}</math> total 2's. The total number of 2's is therefore <math>\frac{n \cdot(n+1)^2}{2} = \frac{n^3+2n^2+n}{2}</math>. Plugging in our answer choices into this formula yields 11 (answer choice <math>\mathrm{(A)}</math>) as the correct answer. | There are <math>n+1</math> choices for the exponent of 5 in each factor, and for each of those choices, there are <math>n+1</math> factors (each corresponding to a different exponent of 2), yielding <math>0+1+2+3...+n = \frac{n(n+1)}{2}</math> total 2's. The total number of 2's is therefore <math>\frac{n \cdot(n+1)^2}{2} = \frac{n^3+2n^2+n}{2}</math>. Plugging in our answer choices into this formula yields 11 (answer choice <math>\mathrm{(A)}</math>) as the correct answer. | ||
− | + | === Solution 2 === | |
− | ===Solution 2=== | ||
− | |||
We are given <cmath> \log_{10}d_1 + \log_{10}d_2 + \ldots + \log_{10}d_k = 792 </cmath> The property <math>\log(ab) = \log(a)+\log(b)</math> now gives <cmath> \log_{10}(d_1 d_2\cdot\ldots d_k) = 792 </cmath> The product of the divisors is (from elementary number theory) <math>a^{d(n)/2}</math> where <math>d(n)</math> is the number of divisors. Note that <math>10^n = 2^n\cdot 5^n</math>, so <math>d(n) = (n + 1)^2</math>. Substituting these values with <math>a = 10^n</math> in our equation above, we get <math>n(n + 1)^2 = 1584</math>, from whence we immediately obtain <math>\framebox[1.2\width]{(A)}</math> as the correct answer. | We are given <cmath> \log_{10}d_1 + \log_{10}d_2 + \ldots + \log_{10}d_k = 792 </cmath> The property <math>\log(ab) = \log(a)+\log(b)</math> now gives <cmath> \log_{10}(d_1 d_2\cdot\ldots d_k) = 792 </cmath> The product of the divisors is (from elementary number theory) <math>a^{d(n)/2}</math> where <math>d(n)</math> is the number of divisors. Note that <math>10^n = 2^n\cdot 5^n</math>, so <math>d(n) = (n + 1)^2</math>. Substituting these values with <math>a = 10^n</math> in our equation above, we get <math>n(n + 1)^2 = 1584</math>, from whence we immediately obtain <math>\framebox[1.2\width]{(A)}</math> as the correct answer. | ||
Line 27: | Line 24: | ||
Trying for answer choices we get <math>n=11</math> | Trying for answer choices we get <math>n=11</math> | ||
− | ==Alternative thinking== | + | == Alternative thinking == |
After arriving at the equation <math>n(n+1)^2 = 1584</math>, notice that all of the answer choices are in the form <math>10+k</math>, where <math>k</math> is <math>1-5</math>. We notice that the ones digit of <math>n(n+1)^2</math> is <math>4</math>, and it is dependent on the ones digit of the answer choices. Trying <math>1-5</math> for <math>n</math>, we see that only <math>1</math> yields a ones digit of <math>4</math>, so our answer is <math>11</math>. | After arriving at the equation <math>n(n+1)^2 = 1584</math>, notice that all of the answer choices are in the form <math>10+k</math>, where <math>k</math> is <math>1-5</math>. We notice that the ones digit of <math>n(n+1)^2</math> is <math>4</math>, and it is dependent on the ones digit of the answer choices. Trying <math>1-5</math> for <math>n</math>, we see that only <math>1</math> yields a ones digit of <math>4</math>, so our answer is <math>11</math>. | ||
Revision as of 22:07, 16 October 2020
Contents
[hide]Problem 23
The sum of the base- logarithms of the divisors of is . What is ?
Solutions
Solution 1
Every factor of will be of the form . Using the logarithmic property , it suffices to count the total number of 2's and 5's running through all possible . For every factor , there will be another , so it suffices to count the total number of 2's occurring in all factors (because of this symmetry, the number of 5's will be equal). And since , the final sum will be the total number of 2's occurring in all factors of .
There are choices for the exponent of 5 in each factor, and for each of those choices, there are factors (each corresponding to a different exponent of 2), yielding total 2's. The total number of 2's is therefore . Plugging in our answer choices into this formula yields 11 (answer choice ) as the correct answer.
Solution 2
We are given The property now gives The product of the divisors is (from elementary number theory) where is the number of divisors. Note that , so . Substituting these values with in our equation above, we get , from whence we immediately obtain as the correct answer.
Solution 3
For every divisor of , , we have . There are divisors of that are . After casework on the parity of , we find that the answer is given by .
Solution 4
The sum is Trying for answer choices we get
Alternative thinking
After arriving at the equation , notice that all of the answer choices are in the form , where is . We notice that the ones digit of is , and it is dependent on the ones digit of the answer choices. Trying for , we see that only yields a ones digit of , so our answer is .
See Also
2008 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.