Difference between revisions of "2006 AMC 10B Problems/Problem 15"
(→Solution 2) |
m (minor edit) |
||
Line 2: | Line 2: | ||
Rhombus <math>ABCD</math> is similar to rhombus <math>BFDE</math>. The area of rhombus <math>ABCD</math> is <math>24</math> and <math> \angle BAD = 60^\circ </math>. What is the area of rhombus <math>BFDE</math>? | Rhombus <math>ABCD</math> is similar to rhombus <math>BFDE</math>. The area of rhombus <math>ABCD</math> is <math>24</math> and <math> \angle BAD = 60^\circ </math>. What is the area of rhombus <math>BFDE</math>? | ||
− | |||
<asy> defaultpen(linewidth(0.7)+fontsize(10)); size(120); | <asy> defaultpen(linewidth(0.7)+fontsize(10)); size(120); | ||
pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3)); | pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3)); | ||
Line 14: | Line 13: | ||
label("$F$", F, dir(point--F)); | label("$F$", F, dir(point--F)); | ||
</asy> | </asy> | ||
+ | |||
<math> \mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3} </math> | <math> \mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3} </math> | ||
− | == Solution == | + | == Solutions == |
+ | === Solution 1 === | ||
Using properties of a [[rhombus]], <math> \angle DAB = \angle DCB = 60 ^\circ </math> and <math> \angle ADC = \angle ABC = 120 ^\circ </math>. It is easy to see that rhombus <math>ABCD</math> is made up of [[equilateral triangle]]s <math>DAB</math> and <math>DCB</math>. Let the lengths of the sides of rhombus <math>ABCD</math> be <math>s</math>. | Using properties of a [[rhombus]], <math> \angle DAB = \angle DCB = 60 ^\circ </math> and <math> \angle ADC = \angle ABC = 120 ^\circ </math>. It is easy to see that rhombus <math>ABCD</math> is made up of [[equilateral triangle]]s <math>DAB</math> and <math>DCB</math>. Let the lengths of the sides of rhombus <math>ABCD</math> be <math>s</math>. | ||
Line 25: | Line 26: | ||
Let <math>x</math> be the area of rhombus <math>BFDE</math>. Then <math> \frac{x}{24} = \frac{1}{3} </math>, so <math> x = 8 \Longrightarrow \boxed{\mathrm{(C)}}</math>. | Let <math>x</math> be the area of rhombus <math>BFDE</math>. Then <math> \frac{x}{24} = \frac{1}{3} </math>, so <math> x = 8 \Longrightarrow \boxed{\mathrm{(C)}}</math>. | ||
− | == Solution 2 == | + | === Solution 2 === |
Triangle DAB is equilateral so triangles <math>DEA</math>, <math>AEB</math>, <math>BED</math>, <math>BFD</math>, <math>BFC</math> and <math>CFD</math> are all congruent with angles <math>30^\circ</math>, <math>30^\circ</math> and <math>120^\circ</math> from which it follows that rhombus <math>BFDE</math> has one third the area of rhombus <math>ABCD</math> i.e. <math>8 \Longrightarrow \boxed{\mathrm{(C)}}</math>. | Triangle DAB is equilateral so triangles <math>DEA</math>, <math>AEB</math>, <math>BED</math>, <math>BFD</math>, <math>BFC</math> and <math>CFD</math> are all congruent with angles <math>30^\circ</math>, <math>30^\circ</math> and <math>120^\circ</math> from which it follows that rhombus <math>BFDE</math> has one third the area of rhombus <math>ABCD</math> i.e. <math>8 \Longrightarrow \boxed{\mathrm{(C)}}</math>. |
Revision as of 23:25, 18 October 2020
Contents
[hide]Problem
Rhombus is similar to rhombus . The area of rhombus is and . What is the area of rhombus ?
Solutions
Solution 1
Using properties of a rhombus, and . It is easy to see that rhombus is made up of equilateral triangles and . Let the lengths of the sides of rhombus be .
The longer diagonal of rhombus is . Since is a side of an equilateral triangle with a side length of , . The longer diagonal of rhombus is . Since is twice the length of an altitude of of an equilateral triangle with a side length of ,
The ratio of the longer diagonal of rhombus to rhombus is . Therefore, the ratio of the area of rhombus to rhombus is
Let be the area of rhombus . Then , so .
Solution 2
Triangle DAB is equilateral so triangles , , , , and are all congruent with angles , and from which it follows that rhombus has one third the area of rhombus i.e. .
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.