Difference between revisions of "2008 AMC 12A Problems/Problem 16"
(→Solution 2) |
m (minor edit) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | == Problem == |
The numbers <math>\log(a^3b^7)</math>, <math>\log(a^5b^{12})</math>, and <math>\log(a^8b^{15})</math> are the first three terms of an [[arithmetic sequence]], and the <math>12^\text{th}</math> term of the sequence is <math>\log{b^n}</math>. What is <math>n</math>? | The numbers <math>\log(a^3b^7)</math>, <math>\log(a^5b^{12})</math>, and <math>\log(a^8b^{15})</math> are the first three terms of an [[arithmetic sequence]], and the <math>12^\text{th}</math> term of the sequence is <math>\log{b^n}</math>. What is <math>n</math>? | ||
<math>\mathrm{(A)}\ 40\qquad\mathrm{(B)}\ 56\qquad\mathrm{(C)}\ 76\qquad\mathrm{(D)}\ 112\qquad\mathrm{(E)}\ 143</math> | <math>\mathrm{(A)}\ 40\qquad\mathrm{(B)}\ 56\qquad\mathrm{(C)}\ 76\qquad\mathrm{(D)}\ 112\qquad\mathrm{(E)}\ 143</math> | ||
− | + | == Solutions == | |
− | ===Solution 1=== | + | === Solution 1 === |
Let <math>A = \log(a)</math> and <math>B = \log(b)</math>. | Let <math>A = \log(a)</math> and <math>B = \log(b)</math>. | ||
Line 16: | Line 16: | ||
Thus the <math>12^\text{th}</math> term is <math>(9\cdot12 + 4)B = 112B = nB \Rightarrow n = 112\Rightarrow \boxed{D}</math>. | Thus the <math>12^\text{th}</math> term is <math>(9\cdot12 + 4)B = 112B = nB \Rightarrow n = 112\Rightarrow \boxed{D}</math>. | ||
− | ===Solution 2=== | + | === Solution 2 === |
If <math>\log(a^3b^7)</math>, <math>\log(a^5b^{12})</math>, and <math>\log(a^8b^{15})</math> are in [[arithmetic progression]], then <math>a^3b^7</math>, <math>a^5b^{12}</math>, and <math>a^8b^{15}</math> are in [[geometric progression]]. Therefore, | If <math>\log(a^3b^7)</math>, <math>\log(a^5b^{12})</math>, and <math>\log(a^8b^{15})</math> are in [[arithmetic progression]], then <math>a^3b^7</math>, <math>a^5b^{12}</math>, and <math>a^8b^{15}</math> are in [[geometric progression]]. Therefore, | ||
Line 23: | Line 23: | ||
Therefore, <math>a^3b^7=b^{13}</math>, <math>a^5b^{12}=b^{22}</math>, therefore the 12th term in the sequence is <math>b^{13+9*11}=b^{112} \Rightarrow \boxed{D}</math> | Therefore, <math>a^3b^7=b^{13}</math>, <math>a^5b^{12}=b^{22}</math>, therefore the 12th term in the sequence is <math>b^{13+9*11}=b^{112} \Rightarrow \boxed{D}</math> | ||
− | ===Solution 3=== | + | === Solution 3 === |
<math>\ \text{If a, b, and c are in a arithmetic progression then } b = \frac{a+c}{2} \text{ which means}</math> | <math>\ \text{If a, b, and c are in a arithmetic progression then } b = \frac{a+c}{2} \text{ which means}</math> | ||
<math>\ \log(a^5b^{12}) = \frac{\log(a^3b^7) + \log(a^8b^{15})}{2}= \frac{\log(a^{11}b^{22})}{2} \text{ therefore}</math> | <math>\ \log(a^5b^{12}) = \frac{\log(a^3b^7) + \log(a^8b^{15})}{2}= \frac{\log(a^{11}b^{22})}{2} \text{ therefore}</math> | ||
Line 30: | Line 30: | ||
<math>\ \text{The 12th term would be } \log(b^{112}) \Rightarrow n=112 \Rightarrow D </math> | <math>\ \text{The 12th term would be } \log(b^{112}) \Rightarrow n=112 \Rightarrow D </math> | ||
− | ==See Also== | + | == See Also == |
{{AMC12 box|year=2008|ab=A|num-b=15|num-a=17}} | {{AMC12 box|year=2008|ab=A|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:05, 19 October 2020
Problem
The numbers , , and are the first three terms of an arithmetic sequence, and the term of the sequence is . What is ?
Solutions
Solution 1
Let and .
The first three terms of the arithmetic sequence are , , and , and the term is .
Thus, .
Since the first three terms in the sequence are , , and , the th term is .
Thus the term is .
Solution 2
If , , and are in arithmetic progression, then , , and are in geometric progression. Therefore,
Therefore, , , therefore the 12th term in the sequence is
Solution 3
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.