Difference between revisions of "2014 AMC 12B Problems/Problem 5"

(Problem)
m (minor edit)
Line 1: Line 1:
==Problem==
+
== Problem ==
 +
Doug constructs a square window using <math> 8 </math> equal-size panes of glass, as shown. The ratio of the height to width for each pane is <math> 5 : 2 </math>, and the borders around and between the panes are <math> 2 </math> inches wide. In inches, what is the side length of the square window?
  
Doug constructs a square window using <math> 8 </math> equal-size panes of glass, as shown. The ratio of the height to width for each pane is <math> 5 : 2 </math>, and the borders around and between the panes are <math> 2 </math> inches wide. In inches, what is the side length of the square window?
 
 
<asy>
 
<asy>
 
fill((0,0)--(2,0)--(2,26)--(0,26)--cycle,gray);
 
fill((0,0)--(2,0)--(2,26)--(0,26)--cycle,gray);
Line 12: Line 12:
 
fill((0,24)--(26,24)--(26,26)--(0,26)--cycle,gray);
 
fill((0,24)--(26,24)--(26,26)--(0,26)--cycle,gray);
 
</asy>
 
</asy>
 +
 
<math> \textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34 </math>
 
<math> \textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34 </math>
  
==Solution==
+
== Solution ==
 
 
 
Let the height of the panes equal <math>5x</math>, and let the width of the panes equal <math>2x</math>.  Now notice that the total width of the borders equals <math>10</math>, and the total height of the borders is <math>6</math>.  We have
 
Let the height of the panes equal <math>5x</math>, and let the width of the panes equal <math>2x</math>.  Now notice that the total width of the borders equals <math>10</math>, and the total height of the borders is <math>6</math>.  We have
 
<cmath>10 + 4(2x) = 6 + 2(5x)</cmath>
 
<cmath>10 + 4(2x) = 6 + 2(5x)</cmath>
Line 22: Line 22:
 
<cmath>10+ 4(2x) = 10 + 16 = \boxed{\textbf{(A)}\ 26}</cmath>
 
<cmath>10+ 4(2x) = 10 + 16 = \boxed{\textbf{(A)}\ 26}</cmath>
  
== See also ==
+
== See Also ==
 
{{AMC12 box|year=2014|ab=B|num-b=4|num-a=6}}
 
{{AMC12 box|year=2014|ab=B|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:10, 19 October 2020

Problem

Doug constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5 : 2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length of the square window?

[asy] fill((0,0)--(2,0)--(2,26)--(0,26)--cycle,gray); fill((6,0)--(8,0)--(8,26)--(6,26)--cycle,gray); fill((12,0)--(14,0)--(14,26)--(12,26)--cycle,gray); fill((18,0)--(20,0)--(20,26)--(18,26)--cycle,gray); fill((24,0)--(26,0)--(26,26)--(24,26)--cycle,gray); fill((0,0)--(26,0)--(26,2)--(0,2)--cycle,gray); fill((0,12)--(26,12)--(26,14)--(0,14)--cycle,gray); fill((0,24)--(26,24)--(26,26)--(0,26)--cycle,gray); [/asy]

$\textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34$

Solution

Let the height of the panes equal $5x$, and let the width of the panes equal $2x$. Now notice that the total width of the borders equals $10$, and the total height of the borders is $6$. We have \[10 + 4(2x) = 6 + 2(5x)\] \[x = 2\] Now, the total side length of the window equals \[10+ 4(2x) = 10 + 16 = \boxed{\textbf{(A)}\ 26}\]

See Also

2014 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png