Difference between revisions of "2019 AMC 12A Problems/Problem 21"
m (minor edit) |
m (minor edit) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <cmath>z=\frac{1+i}{\sqrt{2}}.</cmath>What is <cmath>\left(z^{1^2}+z^{2^2}+z^{3^2}+\dots+z^{{12}^2}\right) \cdot \left(\frac{1}{z^{1^2}}+\frac{1}{z^{2^2}}+\frac{1}{z^{3^2}}+\dots+\frac{1}{z^{{12}^2}}\right)?</cmath> | Let <cmath>z=\frac{1+i}{\sqrt{2}}.</cmath>What is <cmath>\left(z^{1^2}+z^{2^2}+z^{3^2}+\dots+z^{{12}^2}\right) \cdot \left(\frac{1}{z^{1^2}}+\frac{1}{z^{2^2}}+\frac{1}{z^{3^2}}+\dots+\frac{1}{z^{{12}^2}}\right)?</cmath> | ||
+ | |||
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 72-36\sqrt2 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 72+36\sqrt2</math> | <math>\textbf{(A) } 18 \qquad \textbf{(B) } 72-36\sqrt2 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 72+36\sqrt2</math> | ||
+ | == Solutions == | ||
=== Solution 1 === | === Solution 1 === | ||
Note that <math>z = \mathrm{cis }(45^{\circ})</math>. | Note that <math>z = \mathrm{cis }(45^{\circ})</math>. |
Revision as of 00:24, 19 October 2020
Contents
[hide]Problem
Let What is
Solutions
Solution 1
Note that .
Also note that for all positive integers because of De Moivre's Theorem. Therefore, we want to look at the exponents of each term modulo .
and are all
and are all
and are all
and are all
Therefore,
The term thus simplifies to , while the term simplifies to . Upon multiplication, the cancels out and leaves us with .
Solution 2
It is well known that if then . Therefore, we have that the desired expression is equal to We know that so . Then, by De Moivre's Theorem, we have which can easily be computed as .
Solution 3 (bashing)
We first calculate that . After a bit of calculation for the other even powers of , we realize that they cancel out add up to zero. Now we can simplify the expression to . Then, we calculate the first few odd powers of . We notice that , so the values cycle after every 8th power. Since all of the odd squares are a multiple of away from each other, , so , and . When multiplied together, we get as our answer.
~ Baolan
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2019amc12a/493
See Also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.