Difference between revisions of "1997 AIME Problems/Problem 14"

(Solution)
(Solution)
Line 17: Line 17:
 
z^{1997}&=&e^{2\pi ik}\
 
z^{1997}&=&e^{2\pi ik}\
 
z&=&e^{\frac{2\pi ik}{1997}}
 
z&=&e^{\frac{2\pi ik}{1997}}
\end{eqnarray*}<math>
+
\end{eqnarray*}<\math>
  
 
== See also ==
 
== See also ==
 
* [[1997 AIME Problems]]</math>
 
* [[1997 AIME Problems]]</math>

Revision as of 19:10, 7 March 2007

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

The solution requires the use of Euler's formula:

$\displaystyle e^{i\theta}=\cos(\theta)+i\sin(\theta)$

If $\displaystyle \theta=2\pi ik$, where k is any constant, the equation reduces to: $e2πik=cos(2πk)+isin(2πk)=1+0i=1+0=1z19971=0z1997=1z1997=e2πikz=e2πik1997<\math>

== See also ==

  • [[1997 AIME Problems]]$ (Error compiling LaTeX. Unknown error_msg)