Difference between revisions of "1997 AIME Problems/Problem 14"

(Solution)
(Solution)
Line 8: Line 8:
  
 
If <math>\displaystyle \theta=2\pi ik</math>, where k is any constant, the equation reduces to:
 
If <math>\displaystyle \theta=2\pi ik</math>, where k is any constant, the equation reduces to:
<math>\begin{eqnarray*}
+
<math>
e^{2\pi ik}&=&\cos(2\pi k)+i\sin(2\pi k)\
+
e^{2\pi ik}=\cos(2\pi k)+i\sin(2\pi k)\
&=&1+0i\
+
=1+0i\
&=&1+0\
+
=1+0\
&=&1\
+
=1\
z^{1997}-1&=&0\
+
z^{1997}-1=0\
z^{1997}&=&1\
+
z^{1997}=1\
z^{1997}&=&e^{2\pi ik}\
+
z^{1997}=e^{2\pi ik}\
z&=&e^{\frac{2\pi ik}{1997}}
+
z=e^{\frac{2\pi ik}{1997}}<\math>
\end{eqnarray*}<\math>
 
  
 
== See also ==
 
== See also ==
* [[1997 AIME Problems]]</math>
+
* [[1997 AIME Problems]]
 +
 
 +
</math>

Revision as of 19:12, 7 March 2007

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

The solution requires the use of Euler's formula:

$\displaystyle e^{i\theta}=\cos(\theta)+i\sin(\theta)$

If $\displaystyle \theta=2\pi ik$, where k is any constant, the equation reduces to: $e^{2\pi ik}=\cos(2\pi k)+i\sin(2\pi k)\ =1+0i\ =1+0\ =1\ z^{1997}-1=0\ z^{1997}=1\ z^{1997}=e^{2\pi ik}\ z=e^{\frac{2\pi ik}{1997}}<\math>

== See also ==

  • [[1997 AIME Problems]]$ (Error compiling LaTeX. Unknown error_msg)