Difference between revisions of "1988 AIME Problems/Problem 3"
(solution) |
Thedodecagon (talk | contribs) m (→Solution 4) |
||
(20 intermediate revisions by 7 users not shown) | |||
Line 2: | Line 2: | ||
Find <math>(\log_2 x)^2</math> if <math>\log_2 (\log_8 x) = \log_8 (\log_2 x)</math>. | Find <math>(\log_2 x)^2</math> if <math>\log_2 (\log_8 x) = \log_8 (\log_2 x)</math>. | ||
− | == Solution == | + | == Solution 1== |
Raise both as [[exponent]]s with base 8: | Raise both as [[exponent]]s with base 8: | ||
− | < | + | <cmath> |
− | + | \begin{align*} | |
− | \begin{ | + | 8^{\log_2 (\log_8 x)} &= 8^{\log_8 (\log_2 x)}\ |
− | 8^{\log_2 (\log_8 x)} &= | + | 2^{3 \log_2(\log_8x)} &= \log_2x\ |
− | 2^{3 \log_2(\log_8x) | + | (\log_8x)^3 &= \log_2x\ |
− | (\log_8x)^3 &= | + | \left(\frac{\log_2x}{\log_28}\right)^3 &= \log_2x\ |
− | \left(\frac{\log_2x}{\log_28}\right)^3 &= | + | (\log_2x)^2 &= (\log_28)^3 = \boxed{027}\ |
− | (\log_2x)^2 &= | + | \end{align*} |
− | \end{ | + | </cmath> |
− | </ | ||
---- | ---- | ||
A quick explanation of the steps: On the 1st step, we use the property of [[logarithm]]s that <math>a^{\log_a x} = x</math>. On the 2nd step, we use the fact that <math>k \log_a x = \log_a x^k</math>. On the 3rd step, we use the [[change of base formula]], which states <math>\log_a b = \frac{\log_k b}{\log_k a}</math> for arbitrary <math>k</math>. | A quick explanation of the steps: On the 1st step, we use the property of [[logarithm]]s that <math>a^{\log_a x} = x</math>. On the 2nd step, we use the fact that <math>k \log_a x = \log_a x^k</math>. On the 3rd step, we use the [[change of base formula]], which states <math>\log_a b = \frac{\log_k b}{\log_k a}</math> for arbitrary <math>k</math>. | ||
+ | |||
+ | == Solution 2: Substitution == | ||
+ | We wish to convert this expression into one which has a uniform base. Let's scale down all the powers of 8 to 2. | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | {\log_2 (\frac{1}{3}\log_2 x)} &= \frac{1}{3}{\log_2 (\log_2 x)}\ | ||
+ | {\log_2 x = y}\ | ||
+ | {\log_2 (\frac{1}{3}y)} &= \frac{1}{3}{\log_2 (y)}\ | ||
+ | {3\log_2 (\frac{1}{3}y)} &= {\log_2 (y)}\ | ||
+ | {\log_2 (\frac{1}{3}y)^3} &= {\log_2 (y)}\ | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Solving, we get <math>y^2 = 27</math>, which is what we want. | ||
+ | <math>\boxed{27}</math> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | Just a quick note- | ||
+ | In this solution, we used 2 important rules of logarithm: | ||
+ | 1) <math>\log_a b^n=n\log_a b</math>. | ||
+ | 2) <math>\log_{a^n} b=\frac{1}{n}\log_a b</math>. | ||
+ | |||
+ | == Solution 3 == | ||
+ | |||
+ | First we have | ||
+ | <cmath>\begin{align*} | ||
+ | \log_2(\log_8x)&=\log_8(\log_2x)\ | ||
+ | \frac{\log_2(\log_8x)}{\log_8(\log_2x)}&=1 | ||
+ | \end{align*}</cmath> | ||
+ | Changing the base in the numerator yields | ||
+ | <cmath>\begin{align*} | ||
+ | \frac{3\log_8(\log_8x)}{\log_8(\log_2x)}&=1\ | ||
+ | \frac{\log_8(\log_8x)}{\log_8(\log_2x)}&=\frac{1}{3}\ | ||
+ | \end{align*}</cmath> | ||
+ | Using the property <math>\frac{\log_ab}{\log_ac}=\log_cb</math> yields | ||
+ | <cmath>\begin{align*} | ||
+ | \log_{\log_2x}(\log_8x)&=\frac{1}{3}\ | ||
+ | (\log_2x)^\frac{1}{3}&=\log_8x\ | ||
+ | \sqrt[3]{\log_2x}&=\frac{\log_2x}{3} | ||
+ | \end{align*}</cmath> | ||
+ | Now setting <math>y=\log_2x</math>, we have | ||
+ | <cmath>\sqrt[3]{y}=\frac{y}{3}</cmath> | ||
+ | Solving gets <math>y=\log_2x=3\sqrt{3}\Longrightarrow(\log_2x)^2=(3\sqrt{3})^2=\boxed{27}</math>. | ||
+ | |||
+ | ~ Nafer | ||
+ | |||
+ | == Solution 4 == | ||
+ | Say that <math>\log_{2^3}x=a</math> and <math>\log_2x=b</math> so we have <math>\log_2a=\log_{2^3}b</math>. And we want <math>b^2</math>. | ||
+ | |||
+ | <math>\ \log_2a=\frac13 \log_{2}b \ \ \text{\tiny{(step 1)}}\ \frac{\log_2a}{\log_{2}b}=\log_ba=\frac13\ b^{1/3}=a.</math> | ||
+ | |||
+ | Because <math>3a=b</math> (as <math>2^{3a}=x</math> and <math>2^b=x</math> from our setup), we have that | ||
+ | |||
+ | <math>b^{1/3}=\frac{b}{3}\ b^{-2/3}=\frac13\ b=3^{3/2}\ \b^2=3^3=\boxed{27}</math> | ||
+ | |||
+ | ~thedodecagon | ||
+ | ------ | ||
+ | Note that we use the property <math>\log_{x^n}y=\frac1n\log_xy</math> in step 1 and <math>\frac{\log_wx}{\log_wy}=\log_yx</math> in step 2 in this solution. | ||
== See also == | == See also == | ||
Line 24: | Line 82: | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 20:52, 18 November 2020
Contents
[hide]Problem
Find if .
Solution 1
Raise both as exponents with base 8:
A quick explanation of the steps: On the 1st step, we use the property of logarithms that . On the 2nd step, we use the fact that . On the 3rd step, we use the change of base formula, which states for arbitrary .
Solution 2: Substitution
We wish to convert this expression into one which has a uniform base. Let's scale down all the powers of 8 to 2.
Solving, we get , which is what we want.
Just a quick note- In this solution, we used 2 important rules of logarithm: 1) . 2) .
Solution 3
First we have Changing the base in the numerator yields Using the property yields Now setting , we have Solving gets .
~ Nafer
Solution 4
Say that and so we have . And we want .
Because (as and from our setup), we have that
~thedodecagon
Note that we use the property in step 1 and in step 2 in this solution.
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.