Difference between revisions of "1984 USAMO Problems/Problem 1"
(→Solution 1) |
Coolmath2017 (talk | contribs) (→Solution) |
||
Line 3: | Line 3: | ||
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>. | In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>. | ||
− | ==Solution== | + | === Solution 1 === |
− | |||
− | |||
− | |||
Using Vieta's formulas, we have: | Using Vieta's formulas, we have: |
Revision as of 21:41, 15 December 2020
Contents
[hide]Problem
In the polynomial , the product of of its roots is . Find .
Solution 1
Using Vieta's formulas, we have:
From the last of these equations, we see that . Thus, the second equation becomes , and so . The key insight is now to factor the left-hand side as a product of two binomials: , so that we now only need to determine and rather than all four of .
Let and . Plugging our known values for and into the third Vieta equation, , we have . Moreover, the first Vieta equation, , gives . Thus we have two linear equations in and , which we solve to obtain and .
Therefore, we have , yielding .
Solution 2
We start as before: and . We now observe that a and b must be the roots of a quadratic, , where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic .
Now
Equating the coefficients of and with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of and get
See Also
1984 USAMO (Problems • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.