Difference between revisions of "2006 AMC 10B Problems/Problem 14"
Pi is 3.14 (talk | contribs) (→Solution) |
|||
Line 3: | Line 3: | ||
<math> \mathrm{(A) \ } \frac{5}{2}\qquad \mathrm{(B) \ } \frac{7}{2}\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } \frac{9}{2}\qquad \mathrm{(E) \ } 8 </math> | <math> \mathrm{(A) \ } \frac{5}{2}\qquad \mathrm{(B) \ } \frac{7}{2}\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } \frac{9}{2}\qquad \mathrm{(E) \ } 8 </math> | ||
+ | |||
+ | == Video Solution == | ||
+ | https://youtu.be/3dfbWzOfJAI?t=457 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
== Solution == | == Solution == |
Revision as of 01:58, 14 January 2021
Contents
[hide]Problem
Let and be the roots of the equation . Suppose that and are the roots of the equation . What is ?
Video Solution
https://youtu.be/3dfbWzOfJAI?t=457
~ pi_is_3.14
Solution
In a quadratic equation in the form , the product of the roots is (Vieta's Formulas).
Using this property, we have that and
- Notice the fact that we never actually found the roots.
Solution 2
Assume without loss of generality that . We can factor the equation into . Therefore, and . Using these values, we find and . By Vieta's formulas, is the product of the roots of , which are and . Therefore,
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.