Difference between revisions of "2015 AMC 8 Problems/Problem 2"

(Solution 3)
Line 1: Line 1:
 +
==Problem==
 +
 
Point <math>O</math> is the center of the regular octagon <math>ABCDEFGH</math>, and <math>X</math> is the midpoint of the side <math>\overline{AB}.</math> What fraction of the area of the octagon is shaded?
 
Point <math>O</math> is the center of the regular octagon <math>ABCDEFGH</math>, and <math>X</math> is the midpoint of the side <math>\overline{AB}.</math> What fraction of the area of the octagon is shaded?
  
Line 31: Line 33:
 
draw(E--O--X);
 
draw(E--O--X);
 
</asy>
 
</asy>
 
+
==Solutions==
==Solution 1==
+
===Solution 1===
  
 
Since octagon <math>ABCDEFGH</math> is a regular octagon, it is split into <math>8</math> equal parts, such as triangles <math>\bigtriangleup ABO, \bigtriangleup BCO, \bigtriangleup CDO</math>, etc.  These parts, since they are all equal, are <math>\frac{1}{8}</math> of the octagon each.  The shaded region consists of <math>3</math> of these equal parts plus half of another, so the fraction of the octagon that is shaded is <math>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\boxed{\textbf{(D) }\dfrac{7}{16}}.</math>
 
Since octagon <math>ABCDEFGH</math> is a regular octagon, it is split into <math>8</math> equal parts, such as triangles <math>\bigtriangleup ABO, \bigtriangleup BCO, \bigtriangleup CDO</math>, etc.  These parts, since they are all equal, are <math>\frac{1}{8}</math> of the octagon each.  The shaded region consists of <math>3</math> of these equal parts plus half of another, so the fraction of the octagon that is shaded is <math>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\boxed{\textbf{(D) }\dfrac{7}{16}}.</math>
  
==Solution 2==
+
===Solution 2===
 
<asy>
 
<asy>
 
pair A,B,C,D,E,F,G,H,O,X,a,b,c,d,e,f,g;
 
pair A,B,C,D,E,F,G,H,O,X,a,b,c,d,e,f,g;
Line 83: Line 85:
 
The octagon has been divided up into <math>16</math> identical triangles (and thus they each have equal area). Since the shaded region occupies <math>7</math> out of the <math>16</math> total triangles, the answer is <math>\boxed{\textbf{(D)}~\dfrac{7}{16}}</math>.
 
The octagon has been divided up into <math>16</math> identical triangles (and thus they each have equal area). Since the shaded region occupies <math>7</math> out of the <math>16</math> total triangles, the answer is <math>\boxed{\textbf{(D)}~\dfrac{7}{16}}</math>.
  
==Solution 3==
+
===Solution 3===
  
 
For starters what I find helpful is to divide the whole octagon up into triangles as shown here:
 
For starters what I find helpful is to divide the whole octagon up into triangles as shown here:

Revision as of 14:54, 16 January 2021

Problem

Point $O$ is the center of the regular octagon $ABCDEFGH$, and $X$ is the midpoint of the side $\overline{AB}.$ What fraction of the area of the octagon is shaded?

$\textbf{(A) }\frac{11}{32} \quad\textbf{(B) }\frac{3}{8} \quad\textbf{(C) }\frac{13}{32} \quad\textbf{(D) }\frac{7}{16}\quad \textbf{(E) }\frac{15}{32}$

[asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B);  fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);  dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); [/asy]

Solutions

Solution 1

Since octagon $ABCDEFGH$ is a regular octagon, it is split into $8$ equal parts, such as triangles $\bigtriangleup ABO, \bigtriangleup BCO, \bigtriangleup CDO$, etc. These parts, since they are all equal, are $\frac{1}{8}$ of the octagon each. The shaded region consists of $3$ of these equal parts plus half of another, so the fraction of the octagon that is shaded is $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\boxed{\textbf{(D) }\dfrac{7}{16}}.$

Solution 2

[asy] pair A,B,C,D,E,F,G,H,O,X,a,b,c,d,e,f,g; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B); a=midpoint(B--C); b=midpoint(C--D); c=midpoint(D--E); d=midpoint(E--F); e=midpoint(F--G); f=midpoint(G--H); g=midpoint(H--A);   fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);   dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); draw(B--F); draw(A--O); draw(D--H); draw(C--G); draw(a--e); draw(b--f); draw(c--g); draw(d--O); [/asy]

The octagon has been divided up into $16$ identical triangles (and thus they each have equal area). Since the shaded region occupies $7$ out of the $16$ total triangles, the answer is $\boxed{\textbf{(D)}~\dfrac{7}{16}}$.

Solution 3

For starters what I find helpful is to divide the whole octagon up into triangles as shown here: [asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B);  fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);  dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); draw(C--O--B); draw(B--O--A); draw(A--O--H); draw(H--O--G); draw(G--O--F); draw(F--O--E); draw(E--O--D); draw(D--O--C); [/asy]

Now it is just a matter of counting the larger triangles remember that $\triangle BOX$ and $\triangle XOA$ are not full triangles and are only half for these purposes. We count it up and we get a total of $\frac{3.5}{8}$ of the shape shaded. We then simplify it to get our answer of $\boxed{\textbf{(D)}~\frac{7}{16}}$.

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png