Difference between revisions of "2014 AMC 10A Problems/Problem 22"
Mathboy282 (talk | contribs) (→Note) |
|||
Line 42: | Line 42: | ||
Some people may not know this relationship; and this method is only for those who know it. If you do not know this relationship I highly suggest NOT using this solution and/or searching it up. | Some people may not know this relationship; and this method is only for those who know it. If you do not know this relationship I highly suggest NOT using this solution and/or searching it up. | ||
Here it one https://www.quora.com/What-are-the-side-relationships-of-a-15-75-90-triangle | Here it one https://www.quora.com/What-are-the-side-relationships-of-a-15-75-90-triangle | ||
+ | |||
+ | ==Solution 6== | ||
+ | First, divide all side lengths by <math>10</math> to make things easier. We’ll multiply our answer by <math>10</math> at the end. | ||
+ | Call side length <math>BE</math> <math>x</math>. Using the Pythagorean Theorem, we can get side <math>EC</math> is <math>\sqrt{x^2-1}</math>. | ||
+ | |||
+ | The double angle identity for sine states that: <cmath>\sin{2a} = 2 \sin{a}\cdot \cos{a}</cmath> So, <cmath>\sin 30 = 2\sin 15\cdot \cos 15</cmath> We know <math>\sin 30 = \frac{1}{2}</math>. In triangle <math>BEC</math>, <math>\sin 15 = \frac{\sqrt{x^2-1}}{x}</math> and <math>\cos 15 = \frac{1}{x}</math>. Substituting these in, we get our equation: <cmath>\frac{1}{2} = 2 \cdot \frac{\sqrt{x^2-1}}{x} \cdot \frac{1}{x}</cmath> which simplifies to <cmath>x^4-16x^2+16 = 0</cmath> | ||
+ | |||
+ | Now, using the quadratic formula to solve for <math>x^2</math>. <cmath>x^2 = 16 \pm \frac{\sqrt{16^2-4\cdot16}}{2} = 8 \pm 4\sqrt3</cmath> | ||
+ | Because the length <math>BE</math> must be close to one, the value of <math>x^2</math> will be <math>8-4\sqrt3</math>. | ||
+ | We can now find <math>EC</math> = <math>\sqrt{x^2-1} = \sqrt{7-4\sqrt3} = 2-\sqrt3</math> and use it to find <math>DE</math>. <math>DE = 2-EC = \sqrt3</math>. | ||
+ | To find <math>AE</math>, we can use the Pythagorean Theorem with sides <math>AD</math> and <math>DE</math>, OR we can notice that, based on the two side lengths we know, <math>ADE</math> is a <math>30-60-90</math> triangle. So <math>AE = 2\cdot AD = 2</math>. | ||
+ | |||
+ | Finally, we must multiply our answer by <math>10</math>, <math>2\cdot 10 = 20</math>. <math>\boxed{\textbf{(E)}}</math>. | ||
+ | |||
+ | ~AWCHEN01 | ||
== Video Solution by Richard Rusczyk == | == Video Solution by Richard Rusczyk == |
Revision as of 11:42, 29 January 2021
Contents
[hide]Problem
In rectangle , and . Let be a point on such that . What is ?
Solution 1 (Trigonometry)
Note that . (If you do not know the tangent half-angle formula, it is ). Therefore, we have . Since is a triangle,
Solution 2 (No Trigonometry)
Let be a point on line such that points and are distinct and that . By the angle bisector theorem, . Since is a right triangle, and . Additionally, Now, substituting in the obtained values, we get and . Substituting the first equation into the second yields , so . Because is a triangle, .
~edited by dolphin7
Solution 3 Quick Construction (No Trigonometry)
Reflect over line segment . Let the point be the point where the right angle is of our newly reflected triangle. By subtracting to find , we see that is a right triangle. By using complementary angles once more, we can see that is a angle, and we've found that is a right triangle. From here, we can use the properties of a right triangle to see that
Solution 4 (No Trigonometry)
Let be a point on such that . Then Since , is isosceles.
Let . Since is , we have
Since is isosceles, we have . Since , we have Thus and .
Finally, by the Pythagorean Theorem, we have
~ Solution by Nafer
~ Edited by TheBeast5520
Note from williamgolly: When you find DE, note how ADE is congruent to a 30-60-90 triangle and you can easily find AE from there
Solution 5(15-75-90 Triangle)
We notice a 15-75-90 triangle on . Implying the formula, we will continue as follows to get . ~mathboy282
Note
Some people may not know this relationship; and this method is only for those who know it. If you do not know this relationship I highly suggest NOT using this solution and/or searching it up. Here it one https://www.quora.com/What-are-the-side-relationships-of-a-15-75-90-triangle
Solution 6
First, divide all side lengths by to make things easier. We’ll multiply our answer by at the end. Call side length . Using the Pythagorean Theorem, we can get side is .
The double angle identity for sine states that: So, We know . In triangle , and . Substituting these in, we get our equation: which simplifies to
Now, using the quadratic formula to solve for . Because the length must be close to one, the value of will be . We can now find = and use it to find . . To find , we can use the Pythagorean Theorem with sides and , OR we can notice that, based on the two side lengths we know, is a triangle. So .
Finally, we must multiply our answer by , . .
~AWCHEN01
Video Solution by Richard Rusczyk
https://www.youtube.com/watch?v=-GBvCLSfTuo
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.