Difference between revisions of "2021 AMC 10A Problems/Problem 19"
MRENTHUSIASM (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
The area of the region bounded by the graph of<cmath>x^2+y^2 = 3|x-y| + 3|x+y|</cmath>is <math>m+n\pi</math>, where <math>m</math> and <math>n</math> are integers. What is <math>m + n</math>? | The area of the region bounded by the graph of<cmath>x^2+y^2 = 3|x-y| + 3|x+y|</cmath>is <math>m+n\pi</math>, where <math>m</math> and <math>n</math> are integers. What is <math>m + n</math>? | ||
Revision as of 11:50, 12 February 2021
Contents
[hide]Problem
The area of the region bounded by the graph ofis , where and are integers. What is ?
Solution 1
In order to attack this problem, we need to consider casework:
Case 1:
Substituting and simplifying, we have , i.e. , which gives us a circle of radius centered at .
Case 2:
Substituting and simplifying again, we have , i.e. . This gives us a circle of radius centered at .
Case 3:
Doing the same process as before, we have , i.e. . This gives us a circle of radius centered at .
Case 4:
One last time: we have , i.e. . This gives us a circle of radius centered at .
After combining all the cases and drawing them on the Cartesian Plane, this is what the diagram looks like:
Now, the area of the shaded region is just a square with side length with four semicircles of radius . The area is . The answer is which is
Solution by Bryguy
Diagram anonymous (?): https://artofproblemsolving.com/wiki/index.php/File:Image_2021-02-11_111327.png (someone please help link file thanks)
Video Solution (Using absolute value properties to graph)
~ pi_is_3.14
See Also
2021 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.