Difference between revisions of "2006 AMC 10B Problems/Problem 14"
m (→Solution) |
m (→Solution) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | In a [[quadratic equation]] of the form <math> x^2 + bx + c = 0 </math>, the product of the [[root]]s is <math>c</math> | + | In a [[quadratic equation]] of the form <math> x^2 + bx + c = 0 </math>, the product of the [[root]]s is <math>c</math> [[Vieta's Formulas]]. |
Using this property, we have that <math>ab=2</math> and | Using this property, we have that <math>ab=2</math> and |
Revision as of 15:50, 2 June 2021
Contents
[hide]Problem
Let and be the roots of the equation . Suppose that and are the roots of the equation . What is ?
Video Solution
https://youtu.be/3dfbWzOfJAI?t=457
~ pi_is_3.14
Solution
In a quadratic equation of the form , the product of the roots is Vieta's Formulas.
Using this property, we have that and
- Notice the fact that we never actually found the roots.
Solution 2
Assume without loss of generality that . We can factor the equation into . Therefore, and . Using these values, we find and . By Vieta's formulas, is the product of the roots of , which are and . Therefore,
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.