Difference between revisions of "1982 AHSME Problems/Problem 15"

(Created page with "==Problem== Let <math>[z]</math> denote the greatest integer not exceeding <math>z</math>. Let <math>x</math> and <math>y</math> satisfy the simultaneous equations \begin{ali...")
 
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>[z]</math> denote the greatest integer not exceeding <math>z</math>. Let <math>x</math> and <math>y</math> satisfy the simultaneous equations
+
Let <math>[z]</math> denote the greatest integer not exceeding <math>z</math>. Let <math>x</math> and <math>y</math> satisfy the simultaneous equations  
  
y=2[x]+3y=3[x2]+5.
+
<cmath>y=2[x]+3y=3[x2]+5.</cmath>
If <math>x</math> is not an integer, then <math>x+y</math> is
 
  
<math>\text {(A) } \text{ an integer} \qquad \text {(B) } \text{ between 4 and 5} \qquad \text{(C) }\text{ between  -4 and 4}\qquad\ \text{(D) }\text{ between 15 and 16}\qquad \text{(E) } 16.5</math>
+
If <math>x</math> is not an integer, then <math>x+y</math> is
 +
 
 +
<math>\text {(A) } \text{ an integer} \qquad  
 +
\text {(B) } \text{ between 4 and 5} \qquad  
 +
\text{(C) }\text{ between  -4 and 4}\qquad\
 +
\text{(D) }\text{ between 15 and 16}\qquad
 +
\text{(E) } 16.5 </math>

Revision as of 21:56, 16 June 2021

Problem

Let $[z]$ denote the greatest integer not exceeding $z$. Let $x$ and $y$ satisfy the simultaneous equations

\begin{align*} y&=2[x]+3 \\ y&=3[x-2]+5. \end{align*}

If $x$ is not an integer, then $x+y$ is

$\text {(A) } \text{ an integer} \qquad  \text {(B) } \text{ between 4 and 5} \qquad  \text{(C) }\text{ between  -4 and 4}\qquad\\ \text{(D) }\text{ between 15 and 16}\qquad \text{(E) } 16.5$