Difference between revisions of "1978 AHSME Problems/Problem 25"
(Created page with "==Problem== Let <math>u</math> be a positive number. Consider the set <math>S</math> of all points whose rectangular coordinates <math>(x, y )</math> satisfy all of the follow...") |
m (→Problem) |
||
Line 4: | Line 4: | ||
<math>\text{(i) }\frac{a}{2}\le x\le 2a\qquad \text{(ii) }\frac{a}{2}\le y\le 2a\qquad \text{(iii) }x+y\ge a\ \ \qquad \text{(iv) }x+a\ge y\qquad \text{(v) }y+a\ge x</math> | <math>\text{(i) }\frac{a}{2}\le x\le 2a\qquad \text{(ii) }\frac{a}{2}\le y\le 2a\qquad \text{(iii) }x+y\ge a\ \ \qquad \text{(iv) }x+a\ge y\qquad \text{(v) }y+a\ge x</math> | ||
− | The boundary of set S is a polygon with | + | The boundary of set <math>S</math> is a polygon with |
<math>\textbf{(A) }3\text{ sides}\qquad \textbf{(B) }4\text{ sides}\qquad \textbf{(C) }5\text{ sides}\qquad \textbf{(D) }6\text{ sides}\qquad \textbf{(E) }7\text{ sides}</math> | <math>\textbf{(A) }3\text{ sides}\qquad \textbf{(B) }4\text{ sides}\qquad \textbf{(C) }5\text{ sides}\qquad \textbf{(D) }6\text{ sides}\qquad \textbf{(E) }7\text{ sides}</math> | ||
+ | |||
==Solution== | ==Solution== | ||
<math>\fbox{D}</math> | <math>\fbox{D}</math> |
Revision as of 13:09, 20 June 2021
Problem
Let be a positive number. Consider the set of all points whose rectangular coordinates satisfy all of the following conditions:
The boundary of set is a polygon with
Solution