Difference between revisions of "2013 AMC 12A Problems/Problem 19"
Sugar rush (talk | contribs) |
(→Solution) |
||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
===Solution 1 (Number theoretic power of a point)=== | ===Solution 1 (Number theoretic power of a point)=== | ||
+ | |||
+ | <asy> | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
+ | import graph; size(5cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -156.86902060182828, xmax = 261.4826629156128, ymin = -137.6904841249097, ymax = 103.70826798306636; /* image dimensions */ | ||
+ | |||
+ | |||
+ | draw((0,0)--(-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263)--cycle, linewidth(2)); | ||
+ | /* draw figures */ | ||
+ | draw(circle((0,0), 86), linewidth(2)); | ||
+ | draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth(2)); | ||
+ | draw((0,0)--(-45.39592734786701,-73.0425203578517), linewidth(2)); | ||
+ | draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth(2)); | ||
+ | draw((10.963968250054833,-96.37837620655263)--(0,0), linewidth(2)); | ||
+ | draw((0,0)--(-19.525811335706223,-83.75406074741933), linewidth(2)); | ||
+ | draw((0,0)--(-9.720631644378512,85.4488696264281), linewidth(2)); | ||
+ | label("$x$",(-7.2236403357984384,-86.89843899811834),SE*labelscalefactor); | ||
+ | label("$y$",(-37.535022105012516,-75.42926751787513),SE*labelscalefactor); | ||
+ | /* dots and labels */ | ||
+ | dot((0,0),linewidth(4pt) + dotstyle); | ||
+ | label("$A$", (0.9686250072323931,2.1241777294836823), NE * labelscalefactor); | ||
+ | dot((-45.39592734786701,-73.0425203578517),dotstyle); | ||
+ | label("$B$", (-47.36574051664951,-68.87545524345045), NE * labelscalefactor); | ||
+ | dot((10.963968250054833,-96.37837620655263),linewidth(4pt) + dotstyle); | ||
+ | label("$C$", (12.164720976041195,-94.27147780684612), NE * labelscalefactor); | ||
+ | dot((-19.525811335706223,-83.75406074741933),linewidth(4pt) + dotstyle); | ||
+ | label("$X$", (-15.68898119026363,-81.98307979229983), NE * labelscalefactor); | ||
+ | dot((9.720631644378512,-85.4488696264281),linewidth(4pt) + dotstyle); | ||
+ | label("$D$", (10.799343418869391,-83.34845734947163), NE * labelscalefactor); | ||
+ | dot((-9.720631644378512,85.4488696264281),linewidth(4pt) + dotstyle); | ||
+ | label("$E$", (-8.589017892970244,87.596812808439), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | </asy> | ||
Let <math>CX=x, BX=y</math>. Let the circle intersect <math>AC</math> at <math>D</math> and the diameter including <math>AD</math> intersect the circle again at <math>E</math>. | Let <math>CX=x, BX=y</math>. Let the circle intersect <math>AC</math> at <math>D</math> and the diameter including <math>AD</math> intersect the circle again at <math>E</math>. | ||
Line 42: | Line 79: | ||
The prime factors of <math>2013</math> are <math>3</math>, <math>11</math>, and <math>61</math>. Obviously, <math>x < x+y</math>. In addition, by the Triangle Inequality, <math>BC < AB + AC</math>, so <math>x+y < 183</math>. Therefore, <math>x</math> must equal <math>33</math>, and <math>x+y</math> must equal <math> \boxed{\textbf{(D) }61}</math> | The prime factors of <math>2013</math> are <math>3</math>, <math>11</math>, and <math>61</math>. Obviously, <math>x < x+y</math>. In addition, by the Triangle Inequality, <math>BC < AB + AC</math>, so <math>x+y < 183</math>. Therefore, <math>x</math> must equal <math>33</math>, and <math>x+y</math> must equal <math> \boxed{\textbf{(D) }61}</math> | ||
− | |||
==Video Solution by Richard Rusczyk== | ==Video Solution by Richard Rusczyk== |
Revision as of 19:30, 1 July 2021
Contents
[hide]Problem
In , , and . A circle with center and radius intersects at points and . Moreover and have integer lengths. What is ?
Solution
Solution 1 (Number theoretic power of a point)
Let . Let the circle intersect at and the diameter including intersect the circle again at . Use power of a point on point C to the circle centered at A.
So .
Obviously so we have three solution pairs for . By the Triangle Inequality, only yields a possible length of .
Therefore, the answer is D) 61.
Solution 2
Let , , and meet the circle at and , with on . Then . Using the Power of a Point, we get that . We know that , and that by the triangle inequality on . Thus, we get that
Solution 3
Let represent , and let represent . Since the circle goes through and , . Then by Stewart's Theorem,
(Since cannot be equal to , dividing both sides of the equation by is allowed.)
The prime factors of are , , and . Obviously, . In addition, by the Triangle Inequality, , so . Therefore, must equal , and must equal
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2013amc12a/357
~dolphin7
Video Solution
~sugar_rush
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.