Difference between revisions of "2013 AMC 12A Problems/Problem 19"
(→Solution) |
(→Solution 1 (Number theoretic power of a point)) |
||
Line 11: | Line 11: | ||
<asy> | <asy> | ||
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
− | import graph; size( | + | import graph; size(7cm); |
real labelscalefactor = 0.5; /* changes label-to-point distance */ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
− | pen dps = linewidth(0. | + | pen dps = linewidth(0.5) + fontsize(10); defaultpen(dps); /* default pen style */ |
pen dotstyle = black; /* point style */ | pen dotstyle = black; /* point style */ | ||
real xmin = -156.86902060182828, xmax = 261.4826629156128, ymin = -137.6904841249097, ymax = 103.70826798306636; /* image dimensions */ | real xmin = -156.86902060182828, xmax = 261.4826629156128, ymin = -137.6904841249097, ymax = 103.70826798306636; /* image dimensions */ | ||
− | draw((0,0)--(-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263)--cycle, linewidth( | + | draw((0,0)--(-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263)--cycle, linewidth(1)); |
/* draw figures */ | /* draw figures */ | ||
− | draw(circle((0,0), 86), linewidth( | + | draw(circle((0,0), 86), linewidth(1)); |
− | draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth( | + | draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth(1)); |
− | draw((0,0)--(-45.39592734786701,-73.0425203578517), linewidth( | + | draw((0,0)--(-45.39592734786701,-73.0425203578517), linewidth(1)); |
− | draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth( | + | draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth(1)); |
− | draw((10.963968250054833,-96.37837620655263)--(0,0), linewidth( | + | draw((10.963968250054833,-96.37837620655263)--(0,0), linewidth(1)); |
− | draw((0,0)--(-19.525811335706223,-83.75406074741933), linewidth( | + | draw((0,0)--(-19.525811335706223,-83.75406074741933), linewidth(1)); |
− | draw((0,0)--(-9.720631644378512,85.4488696264281), linewidth( | + | draw((0,0)--(-9.720631644378512,85.4488696264281), linewidth(1)); |
label("$x$",(-7.2236403357984384,-86.89843899811834),SE*labelscalefactor); | label("$x$",(-7.2236403357984384,-86.89843899811834),SE*labelscalefactor); | ||
label("$y$",(-37.535022105012516,-75.42926751787513),SE*labelscalefactor); | label("$y$",(-37.535022105012516,-75.42926751787513),SE*labelscalefactor); | ||
/* dots and labels */ | /* dots and labels */ | ||
− | dot((0,0),linewidth( | + | dot((0,0),linewidth(1pt) + dotstyle); |
label("$A$", (0.9686250072323931,2.1241777294836823), NE * labelscalefactor); | label("$A$", (0.9686250072323931,2.1241777294836823), NE * labelscalefactor); | ||
dot((-45.39592734786701,-73.0425203578517),dotstyle); | dot((-45.39592734786701,-73.0425203578517),dotstyle); | ||
label("$B$", (-47.36574051664951,-68.87545524345045), NE * labelscalefactor); | label("$B$", (-47.36574051664951,-68.87545524345045), NE * labelscalefactor); | ||
− | dot((10.963968250054833,-96.37837620655263),linewidth( | + | dot((10.963968250054833,-96.37837620655263),linewidth(1pt) + dotstyle); |
label("$C$", (12.164720976041195,-94.27147780684612), NE * labelscalefactor); | label("$C$", (12.164720976041195,-94.27147780684612), NE * labelscalefactor); | ||
− | dot((-19.525811335706223,-83.75406074741933),linewidth( | + | dot((-19.525811335706223,-83.75406074741933),linewidth(1pt) + dotstyle); |
label("$X$", (-15.68898119026363,-81.98307979229983), NE * labelscalefactor); | label("$X$", (-15.68898119026363,-81.98307979229983), NE * labelscalefactor); | ||
− | dot((9.720631644378512,-85.4488696264281),linewidth( | + | dot((9.720631644378512,-85.4488696264281),linewidth(1pt) + dotstyle); |
label("$D$", (10.799343418869391,-83.34845734947163), NE * labelscalefactor); | label("$D$", (10.799343418869391,-83.34845734947163), NE * labelscalefactor); | ||
− | dot((-9.720631644378512,85.4488696264281),linewidth( | + | dot((-9.720631644378512,85.4488696264281),linewidth(1pt) + dotstyle); |
label("$E$", (-8.589017892970244,87.596812808439), NE * labelscalefactor); | label("$E$", (-8.589017892970244,87.596812808439), NE * labelscalefactor); | ||
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); |
Revision as of 19:31, 1 July 2021
Contents
[hide]Problem
In , , and . A circle with center and radius intersects at points and . Moreover and have integer lengths. What is ?
Solution
Solution 1 (Number theoretic power of a point)
Let . Let the circle intersect at and the diameter including intersect the circle again at . Use power of a point on point C to the circle centered at A.
So .
Obviously so we have three solution pairs for . By the Triangle Inequality, only yields a possible length of .
Therefore, the answer is D) 61.
Solution 2
Let , , and meet the circle at and , with on . Then . Using the Power of a Point, we get that . We know that , and that by the triangle inequality on . Thus, we get that
Solution 3
Let represent , and let represent . Since the circle goes through and , . Then by Stewart's Theorem,
(Since cannot be equal to , dividing both sides of the equation by is allowed.)
The prime factors of are , , and . Obviously, . In addition, by the Triangle Inequality, , so . Therefore, must equal , and must equal
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2013amc12a/357
~dolphin7
Video Solution
~sugar_rush
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.