Difference between revisions of "2021 IMO Problems/Problem 4"
(→Solution) |
|||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | Let <math>O</math> be the centre of <math>\Omega</math> | + | Let <math>O</math> be the centre of <math>\Omega</math>. |
+ | |||
For <math>AB=BC</math> the result follows simply. By Pitot's Theorem we have <cmath>AB + CD = BC + AD</cmath> so that, <math>AD = CD.</math> The configuration becomes symmetric about <math>OI</math> and the result follows immediately. | For <math>AB=BC</math> the result follows simply. By Pitot's Theorem we have <cmath>AB + CD = BC + AD</cmath> so that, <math>AD = CD.</math> The configuration becomes symmetric about <math>OI</math> and the result follows immediately. | ||
Now assume WLOG <math>AB < BC</math>. Then <math>T</math> lies between <math>A</math> and <math>X</math> in the minor arc <math>AX</math> and <math>Z</math> lies between <math>Y</math> and <math>C</math> in the minor arc <math>YC</math>. | Now assume WLOG <math>AB < BC</math>. Then <math>T</math> lies between <math>A</math> and <math>X</math> in the minor arc <math>AX</math> and <math>Z</math> lies between <math>Y</math> and <math>C</math> in the minor arc <math>YC</math>. | ||
Consider the cyclic quadrilateral <math>ACZX</math>. | Consider the cyclic quadrilateral <math>ACZX</math>. | ||
− | We have <math>\angle CZX = \angle CAB</math> and <math>\angle IAC = \angle IZC</math>. So that, <cmath>\angle CZX - \angle IZC = \angle CAB - \angle IAC</cmath> <cmath>\angle IZX = \angle IAB | + | We have <math>\angle CZX = \angle CAB</math> and <math>\angle IAC = \angle IZC</math>. So that, <cmath>\angle CZX - \angle IZC = \angle CAB - \angle IAC</cmath> <cmath>\angle IZX = \angle IAB</cmath> Since <math>I</math> is the incenter of quadrilateral <math>ABCD</math>, <math>AI</math> is the angular bisector of <math>\angle DBA</math>. This gives us, <cmath>\angle IZX = \angle IAB = \angle IAD = \angle IAY</cmath> Hence the chords <math>IX</math> and <math>IY</math> are equal. |
So <math>Y</math> is the reflection of <math>X</math> about <math>OI</math>. | So <math>Y</math> is the reflection of <math>X</math> about <math>OI</math>. | ||
Hence, <cmath>TX = YZ</cmath> and now it suffices to prove <cmath>AD + DT + XA = CD + DY + ZC</cmath> | Hence, <cmath>TX = YZ</cmath> and now it suffices to prove <cmath>AD + DT + XA = CD + DY + ZC</cmath> | ||
Let <math>P, Q, N</math> and <math>M</math> be the tangency points of <math>\Gamma</math> with <math>AB, BC, CD</math> and <math>DA</math> respectively. Then by tangents we have, <math>AD = AM + MD = AP + ND</math>. So <math>AD + DT + XA = AP + ND + DT + XA = XP + NT</math>. | Let <math>P, Q, N</math> and <math>M</math> be the tangency points of <math>\Gamma</math> with <math>AB, BC, CD</math> and <math>DA</math> respectively. Then by tangents we have, <math>AD = AM + MD = AP + ND</math>. So <math>AD + DT + XA = AP + ND + DT + XA = XP + NT</math>. | ||
− | Similarly we get, <math>CD + DY + ZC = ZQ + YM</math>. So it suffices to prove, <cmath>XP + NT = ZQ + YM | + | Similarly we get, <math>CD + DY + ZC = ZQ + YM</math>. So it suffices to prove, <cmath>XP + NT = ZQ + YM</cmath> |
− | Consider the tangent <math>XJ</math> to <math>\Gamma</math> with <math>J \ne P</math>. Since <math>X</math> and <math>Y</math> are reflections about <math>OI</math> and <math>\Gamma</math> is a circle centred at <math>I</math> the tangents <math>XJ</math> and <math>YM</math> are reflections of each other. Hence <cmath>XP = XJ = YM</cmath> | + | Consider the tangent <math>XJ</math> to <math>\Gamma</math> with <math>J \ne P</math>. Since <math>X</math> and <math>Y</math> are reflections about <math>OI</math> and <math>\Gamma</math> is a circle centred at <math>I</math> the tangents <math>XJ</math> and <math>YM</math> are reflections of each other. Hence <cmath>XP = XJ = YM</cmath> By a similar argument on the reflection of <math>T</math> and <math>Z</math> we get <math>NT = ZQ</math> and finally, |
<cmath> XP + NT = ZQ + YM</cmath> as required. | <cmath> XP + NT = ZQ + YM</cmath> as required. | ||
<math>QED</math> | <math>QED</math> | ||
+ | |||
+ | ~BUMSTAKA |
Revision as of 10:47, 23 July 2021
Problem
Let be a circle with centre , and a convex quadrilateral such that each of the segments and is tangent to . Let be the circumcircle of the triangle . The extension of beyond meets at , and the extension of beyond meets at . The extensions of and beyond meet at and , respectively. Prove that
Solution
Let be the centre of .
For the result follows simply. By Pitot's Theorem we have so that, The configuration becomes symmetric about and the result follows immediately.
Now assume WLOG . Then lies between and in the minor arc and lies between and in the minor arc . Consider the cyclic quadrilateral . We have and . So that, Since is the incenter of quadrilateral , is the angular bisector of . This gives us, Hence the chords and are equal. So is the reflection of about . Hence, and now it suffices to prove Let and be the tangency points of with and respectively. Then by tangents we have, . So . Similarly we get, . So it suffices to prove, Consider the tangent to with . Since and are reflections about and is a circle centred at the tangents and are reflections of each other. Hence By a similar argument on the reflection of and we get and finally, as required.
~BUMSTAKA