Difference between revisions of "2019 AMC 10A Problems/Problem 11"
m (→Solution 1) |
|||
Line 7: | Line 7: | ||
==Solution 1== | ==Solution 1== | ||
Prime factorizing <math>201^9</math>, we get <math>3^9\cdot67^9</math>. | Prime factorizing <math>201^9</math>, we get <math>3^9\cdot67^9</math>. | ||
− | A perfect square must have even powers of its prime factors, so our possible choices for our exponents | + | A perfect square must have even powers of its prime factors, so our possible choices for our exponents to get perfect square are <math>0, 2, 4, 6, 8</math> for both <math>3</math> and <math>67</math>. This yields <math>5\cdot5 = 25</math> perfect squares. |
Perfect cubes must have multiples of <math>3</math> for each of their prime factors' exponents, so we have either <math>0, 3, 6</math>, or <math>9</math> for both <math>3</math> and <math>67</math>, which yields <math>4\cdot4 = 16</math> perfect cubes, for a total of <math>25+16 = 41</math>. | Perfect cubes must have multiples of <math>3</math> for each of their prime factors' exponents, so we have either <math>0, 3, 6</math>, or <math>9</math> for both <math>3</math> and <math>67</math>, which yields <math>4\cdot4 = 16</math> perfect cubes, for a total of <math>25+16 = 41</math>. |
Revision as of 17:35, 6 August 2021
Contents
[hide]Problem
How many positive integer divisors of are perfect squares or perfect cubes (or both)?
Solution 1
Prime factorizing , we get . A perfect square must have even powers of its prime factors, so our possible choices for our exponents to get perfect square are for both and . This yields perfect squares.
Perfect cubes must have multiples of for each of their prime factors' exponents, so we have either , or for both and , which yields perfect cubes, for a total of .
Subtracting the overcounted powers of ( , , , and ), we get .
Solution 2
Observe that . Now divide into cases:
Case 1: The factor is . Then we can have , , , , , or .
Case 2: The factor is . This is the same as Case 1.
Case 3: The factor is some combination of s and s.
This would be easy if we could just have any combination, as that would simply give . However, we must pair the numbers that generate squares with the numbers that generate squares and the same for cubes. In simpler terms, let's organize our values for .
is a "square" because it would give a factor of this number that is a perfect square. More generally, it is even.
is a "cube" because it would give a factor of this number that is a perfect cube. More generally, it is a multiple of .
is a "square".
is interesting, since it's both a "square" and a "cube". Don't count this as either because this would double-count, so we will count this in another case.
is a "square"
is a "cube".
Now let's consider subcases:
Subcase 1: The squares are with each other.
Since we have square terms, and they would pair with other square terms, we get possibilities.
Subcase 2: The cubes are with each other.
Since we have cube terms, and they would pair with other cube terms, we get possibilities.
Subcase 3: A number pairs with .
Since any number can pair with (as it gives both a square and a cube), there would be possibilities. Remember however that there can be two different bases ( and ), and they would produce different results. Thus, there are in fact possibilities.
Finally, summing the cases gives .
Video Solution
~savannahsolver
Video Solution
https://youtu.be/ZhAZ1oPe5Ds?t=2402
~ pi_is_3.14
Video Solution
Education, the Study of Everything
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.