Difference between revisions of "1991 AHSME Problems/Problem 27"

m (Solution)
 
Line 18: Line 18:
 
x^2-1 &= 100-20x+x^2 \\
 
x^2-1 &= 100-20x+x^2 \\
 
20x &= 101 \\
 
20x &= 101 \\
x &= \frac{101}{20}.
+
x &= 5.05.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
We rationalize the denominator in the requested expression, then simplify the result:
 
We rationalize the denominator in the requested expression, then simplify the result:

Latest revision as of 04:26, 6 September 2021

Problem

If \[x+\sqrt{x^2-1}+\frac{1}{x-\sqrt{x^2-1}}=20,\] then \[x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}}=\]

$\textbf{(A) } 5.05 \qquad \textbf{(B) } 20 \qquad \textbf{(C) } 51.005 \qquad \textbf{(D) } 61.25 \qquad \textbf{(E) } 400$

Solution

We rationalize the denominator in the given equation, then solve for $x:$ \begin{align*} x+\sqrt{x^2-1}+\frac{x+\sqrt{x^2-1}}{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)} &= 20 \\ x+\sqrt{x^2-1}+x+\sqrt{x^2-1} &= 20 \\ x+\sqrt{x^2-1} &= 10 \\ \sqrt{x^2-1} &= 10-x \\ x^2-1 &= 100-20x+x^2 \\ 20x &= 101 \\ x &= 5.05. \end{align*} We rationalize the denominator in the requested expression, then simplify the result: \begin{align*} x^2+\sqrt{x^4-1}+\frac{1}{x^2+\sqrt{x^4-1}} &= x^2+\sqrt{x^4-1}+\frac{x^2-\sqrt{x^4-1}}{\left(x^2+\sqrt{x^4-1}\right)\left(x^2-\sqrt{x^4-1}\right)} \\ &= x^2+\sqrt{x^4-1}+x^2-\sqrt{x^4-1} \\ &= 2x^2 \\ &= \boxed{\textbf{(C) } 51.005}. \end{align*}

~Hapaxoromenon (Solution)

~MRENTHUSIASM (Reformatting)

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png